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a b s t r a c t

We use the two-current model of Campbell and Fert to understand the compositional dependence of the
Gilbert damping parameter in certain iron alloys. In that model, spin-up and spin-down carriers have
different resistivities ρ↑ and ρ↓. We emphasize the part of the Gilbert parameter, called Gsf, generated by
spin-flip interband processes. Both Gsf and the anisotropic magnetoresistance ρΔ are proportional to the
square of the spin–orbit parameter, and also proportional to ρ↑. In bcc alloys of iron with V, Cr, Mo, etc.
solutes on the left of iron in the periodic table, ρ↑ is increased by a scattering resonance (Gomes and
Campbell, 1966, 1968). Then ρ↑, ρΔ , and Gsf all exhibit a peak at the same moderate concentration of the
solute. We find the best fit between this theory and existing experimental data of Gilbert damping for
Fe-V epitaxial films at room temperature (Cheng, 2006; Scheck et al., 2007). At room temperature, the
predicted Gsf peak is masked by a background arising from non-flip intraband processes. At elevated
temperatures, the peak is expected to become more prominent, and less hidden in the background.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

The damping of the precession of the magnetization of a
ferromagnet undergoing ferromagnetic resonance is called Gilbert
damping. The damping rate is proportional to the precession
frequency, and is characterized by the Gilbert parameter G,
sometimes called λ [1]. The microscopic processes responsible for
the existence of G in ferromagnetic metals are still not completely
understood.

In the past, experiments were performed on polycrystalline
samples, or on relatively thick single crystals [1] where the ob-
served damping was affected by the skin effect and by exchange-
conductivity effects which complicated the interpretation of the
data. The availability of very thin epitaxial films [2], where the
microwave field penetrates the sample fully, removes these
complications.

Experiments on iron [3] and iron alloys are especially difficult
because of the unusually small value of G. The present paper was
prompted by the work of Cheng [4] on sputtered iron-vanadium
epitaxial films of thickness 50 nm at room temperature, with va-
nadium concentration between 0 and 52 at%. We use also the G
value [5] for a sputtered Fe V73 27 epitaxial film of thickness 8 nm.
More generally, the present theory applies to bcc alloys of iron
with transition-metal solutes to the left of iron in the periodic
table, such as Fe–V, Fe–Cr, and Fe–Mo.

One microscopic mechanism responsible for G in metals was
proposed by Kambersky [6,7]. Electrons undergo transitions

between two states of the same spin while absorbing a quantum of
spin wave. In this non-flip intraband mechanism, G is usually
predicted to be inversely proportional to the electron momentum
relaxation rate or, equivalently, to the electrical resistivity.

In an alternate mechanism, introduced by Turov [8], electrons
jump between states of opposite spin. Early theories of this spin-
flip interband mechanism were based on the s–d exchange model.
A simpler and better kind of theory [9] uses only one kind of
electrons. It predicts α ω τ= ( )1/ d sr , where α is a dimensionless
parameter related to G by the relation αγ=G Ms, γ is the gyro-
magnetic ratio, Ms the magnetization, ωd the precession rate of a
3d electron spin in the intra-atomic d–d exchange field Hdd, and τsr
the 3d spin-relaxation time caused [10] by spin–orbit interaction.

In the latter theory, 3d electrons are assumed to be itinerant.
The intra-atomic d–d exchange field Hdd acting on a spin is gen-
erated by the spins of other 3d electrons. It is given by

μ μ= − ( )J gH S2 /dd dd B0 where ≃J 0.5 eVdd is the d–d intra-atomic
exchange integral, S the average spin of a 3d atom, g the g-factor, μ
0 the vacuum permeability in the SI system of units, and μB the
Bohr magneton. In ferromagnetic resonance, S precesses under
torques created by the total field H which includes external,
demagnetizing and anisotropy fields. As shown in the second pa-
per of Ref. [9], a simple theory of the spin-flip interband processes
can be developed, based on a classical equation of motion for S.
Typically, Hdd is ten thousand times larger than H. However, since
it is antiparallel to S, it exerts no Zeeman torque on it. A damping
term of the Bloch form, resulting from the existence of τsr, is
introduced into the equation of motion. Through that term, S re-
laxes towards the instantaneous direction, called S0, where it
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would have the lowest energy. The importance of Hdd lies in the
fact that it has an influence on S0. Then, starting from Bloch-type
damping, the final result is found to have a form consistent with
Gilbert damping, i.e., with a damping rate proportional to the S
precession frequency ω around the field H. The Gilbert damping
parameter is predicted [9] to be α ω τ= ( )1/ d sr , as stated above.

In the rest of the paper, we will denote by Gnf the non-flip in-
traband part of G, and by Gsf the spin-flip interband part. Com-
bining the equations found in the previous paragraph with the
formula ω = ℏSJ2 /d dd , we obtain

τ μ μ= = ( )G C C g n J/ , / . 1sf sr B at dd0
2 2

Here, nat is the number of atoms per unit volume. Calculation
methods have been developed [11,12] which derive both Gnf and
Gsf from the same formalism. As mentioned by the authors of Ref.
[12], the lack of exact knowledge of electron momentum-relaxa-
tion rates in magnetic metals is an important obstacle to further
progress. The so-called two-current model provides a partial so-
lution to that problem.

2. Two-current model and electrical resistivity in iron-based
alloys

The two-current model was introduced by Campbell and Fert
[13]. In that model, spin-up and spin-down charge carriers are
assumed to each have unique and well-defined effective masses

↑ ↓m m, , concentrations ↑ ↓n n, , and momentum-relaxation times
τ τ↑ ↓, . In earlier work [14], we used that model and spin–orbit in-
teraction to build a theory of spin relaxation applicable to nickel
and certain fcc nickel-based alloys. For reasons explained in that
paper, the idea of spin mixing [13,15] was ignored. In the present
section, we show how this theory must be modified to apply to bcc
alloys of iron with transition-series elements on the left of iron in
the periodic table, such as Fe‐V, Fe‐Cr, Fe‐Mo, etc. The roles of
spin-up and spin-down electrons are exchanged.

In nickel and many nickel alloys, the spin-up Fermi level is at a
fixed location above the top of the spin-up 3d band, in a region
with low density of states and high velocity characteristic of 4s
electrons. Because of this [14], spin-up electrons carry most of the
current, and ρ↑ is much smaller than ρ↓.

Similarly, the spin-down Fermi level of iron and bcc iron alloys
is fixed [16] in a narrow gap of the 3d band, with low density of
states. Because of this, τ↓1/ is small, and ρ↑ is usually larger than ρ↓.
One difference, however, is that the spin-down electrons at the
Fermi level of iron have a stronger 3d character than the spin-up
electrons of Ni and, therefore, a larger spin–orbit interaction. The
spin-dependent resistivities ρ ρ↑ ↓, and the measured resistivity ρ
are given by

ρ τ ρ τ= ( ) = ( ) ( )↑ ↑ ↑ ↑ ↓ ↓ ↓ ↓m e n m e n/ , / , 22 2

ρ ρ ρ= + ( )−
↑
−

↓
− . 31 1 1

In 1966, Gomes and Campbell [17] recognized that the scattering
potential created by a transition-metal solute atom in Ni, Fe, or Co is
too strong for the first Born approximation to be valid for →d d
scattering. For transition-metal solutes V, Cr, Mo, etc. on the left of
iron in the periodic table, the potential is repulsive, and a scattering
resonance is present [17] near the top of the spin-up 3d band of an
iron alloy, close to the Fermi level. The direct effect of the resonance
is to increase the spin-up 3d electron probability on the scattering
solute atom, in a ratio rF. Then, in turn, ρ↑ is increased.

In the alloys considered here, the atomic moment is much
larger on iron atoms than on solute atoms [18]. This provides [19] a
direct experimental confirmation of the idea that electron

probabilities are different on the two kinds of site. Also, the re-
sulting difference in exchange potential reinforces the resonance
for spin-up electrons, and decreases it for spin down [20]. There-
fore, for simplicity, we will assume that the scattering resonance is
present only in the spin-up band.

Scattering theory provides [21,22] a formula for τ↑1/ valid even
when the first Born approximation fails. We consider a spin-up 3d
electron in an initial Bloch-wave state ϕ +

km of wave vector k and
symmetry index m¼1–5. It is an energy eigenstate in the absence
of scattering. This Bloch wave encounters the potential ( )V r of the
crystal containing scattering solutes located at random locations.
The relaxation rate to similar outcoming spin-up 3d Bloch waves
ϕ ′ ′

+
k m is [21]
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Here, ϕ +
km
sc is [21] what has become of the incoming Bloch wave

ϕ +
km after entering the region of the scatterers. It is not a plane

wave anymore. The structure of this scattering state includes an
enhanced value of the electron probability +C mlk

2 at location l if
that location is that of a solute atom. Also, ↑D is the spin-up density
of states, Ω the crystal volume, ϕ ( )+ rm

at a spin-up 3d atomic state.
Finally, the so-called virtual-crystal potential V is [23] some real-
valued average of ( )V r over the crystal which has the periodicity of
the crystal lattice. The Bloch functions are defined as eigenstates of
a hamiltonian where V is the potential energy. In Eq. (4), the value
of the matrix element must still be averaged over equilibrium
distributions of both mk, and ′ ′mk , .

For each value of the solute concentration x, Nordheim [23]
chose the value of V so that the coherent forward scattering
amplitude would vanish. In that manner, he was able to show that
the T¼0 resistivity of a concentrated alloy −B Ax x1 is proportional to
x(1�x) at T¼0. The resistivity is maximum for = =x 0.5 50 at%.
Nordheim's formula was based on the first Born approximation,
valid in the absence of resonances, and we use it for ρ↓:

ρ ρ= ( − ) + ( )↓ ↓ ↓A x x1 . 5
ph

Here, ↓A is a constant, and ρ↓
ph an additional constant term we

have added to represent phonon and defect scattering in films at
≥T 0.
In Ref. [19], we derived an analytic expression which extends

the Nordheim expression to the case where the Born approxima-
tion fails because of a resonance. The original derivation was based
on an equation similar to the present Eq. (4), except that the
equivalent of ϕ +

km was of 4s character. The derivation is still valid.
We use this for ρ↑:

ρ ρ=
( − )

[ | | + ( − ) | |]
+

| | = [ + ( − )( − )] | | = [ + ( − )] ( )

↑
↑

↑

− − −
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1
/ 1 /

,

1 1 1 , 1 1 . 6

B A

ph

A F B F

2

1 1/2 1/2

Here, CA and CB are the average spin-up electron amplitudes on
A and B atoms, with = | | | |r C C/F A B

2 2. Eq. (6) reduces to the Nordheim
formula of Eq. (5) in the special case =r 1F where the resonance is
absent. According to Eq. (6), ρ↑ has a peak [19] at a concentration

≃ ( + )−x r1 F
1. If ⪢r 1F , this x is much less than 50 at%. The coherent

potential approximation gives [24] results similar to those of Eq.
(6) but without a general analytic expression for the resistivity.

By analyzing existing data for ρΔ and ρ in Ni–Fe, Ni–Co, Ni–Mn,
Muth and Christoph [25] showed that ρ↓ has a large peak at a
moderate concentration of solute in nickel. By a similar analysis
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