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ABSTRACT

We use the two-current model of Campbell and Fert to understand the compositional dependence of the
Gilbert damping parameter in certain iron alloys. In that model, spin-up and spin-down carriers have
different resistivities p, and p,. We emphasize the part of the Gilbert parameter, called G, generated by
spin-flip interband processes. Both Gy and the anisotropic magnetoresistance Ap are proportional to the
square of the spin-orbit parameter, and also proportional to p,. In bee alloys of iron with V, Cr, Mo, etc.
solutes on the left of iron in the periodic table, p, is increased by a scattering resonance (Gomes and
Campbell, 1966, 1968). Then p,, Ap, and Gy all exhibit a peak at the same moderate concentration of the
solute. We find the best fit between this theory and existing experimental data of Gilbert damping for
Fe-V epitaxial films at room temperature (Cheng, 2006; Scheck et al., 2007). At room temperature, the
predicted Gy peak is masked by a background arising from non-flip intraband processes. At elevated
temperatures, the peak is expected to become more prominent, and less hidden in the background.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The damping of the precession of the magnetization of a
ferromagnet undergoing ferromagnetic resonance is called Gilbert
damping. The damping rate is proportional to the precession
frequency, and is characterized by the Gilbert parameter G,
sometimes called A [1]. The microscopic processes responsible for
the existence of G in ferromagnetic metals are still not completely
understood.

In the past, experiments were performed on polycrystalline
samples, or on relatively thick single crystals [1] where the ob-
served damping was affected by the skin effect and by exchange-
conductivity effects which complicated the interpretation of the
data. The availability of very thin epitaxial films [2], where the
microwave field penetrates the sample fully, removes these
complications.

Experiments on iron [3] and iron alloys are especially difficult
because of the unusually small value of G. The present paper was
prompted by the work of Cheng [4] on sputtered iron-vanadium
epitaxial films of thickness 50 nm at room temperature, with va-
nadium concentration between 0 and 52 at%. We use also the G
value [5] for a sputtered Fe;3V5; epitaxial film of thickness 8 nm.
More generally, the present theory applies to bcc alloys of iron
with transition-metal solutes to the left of iron in the periodic
table, such as Fe-V, Fe-Cr, and Fe-Mo.

One microscopic mechanism responsible for G in metals was
proposed by Kambersky [6,7]. Electrons undergo transitions
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between two states of the same spin while absorbing a quantum of
spin wave. In this non-flip intraband mechanism, G is usually
predicted to be inversely proportional to the electron momentum
relaxation rate or, equivalently, to the electrical resistivity.

In an alternate mechanism, introduced by Turov [8], electrons
jump between states of opposite spin. Early theories of this spin-
flip interband mechanism were based on the s-d exchange model.
A simpler and better kind of theory [9] uses only one kind of
electrons. It predicts a = 1/(w47r), Where a is a dimensionless
parameter related to G by the relation G = ayM;, y is the gyro-
magnetic ratio, M the magnetization, @, the precession rate of a
3d electron spin in the intra-atomic d-d exchange field Hyy, and 7,
the 3d spin-relaxation time caused [10] by spin-orbit interaction.

In the latter theory, 3d electrons are assumed to be itinerant.
The intra-atomic d-d exchange field Hyy acting on a spin is gen-
erated by the spins of other 3d electrons. It is given by
Hug = — 2J;4S/(@uoug) Where J;; ~ 0.5eV is the d-d intra-atomic
exchange integral, S the average spin of a 3d atom, g the g-factor, y
o the vacuum permeability in the SI system of units, and yp the
Bohr magneton. In ferromagnetic resonance, S precesses under
torques created by the total field H which includes external,
demagnetizing and anisotropy fields. As shown in the second pa-
per of Ref. [9], a simple theory of the spin-flip interband processes
can be developed, based on a classical equation of motion for S.
Typically, Hyg is ten thousand times larger than H. However, since
it is antiparallel to S, it exerts no Zeeman torque on it. A damping
term of the Bloch form, resulting from the existence of 7, is
introduced into the equation of motion. Through that term, S re-
laxes towards the instantaneous direction, called So, where it
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would have the lowest energy. The importance of Hyy lies in the
fact that it has an influence on Sy. Then, starting from Bloch-type
damping, the final result is found to have a form consistent with
Gilbert damping, i.e., with a damping rate proportional to the S
precession frequency @ around the field H. The Gilbert damping
parameter is predicted [9] to be @ = 1/(wqyzs), as stated above.

In the rest of the paper, we will denote by G, the non-flip in-
traband part of G, and by G the spin-flip interband part. Com-
bining the equations found in the previous paragraph with the
formula wq = 25]4/h, we obtain

Gy =Clzg, C= ﬂogzﬂgznat/]dd- M

Here, ng is the number of atoms per unit volume. Calculation
methods have been developed [11,12] which derive both G,s and
G, from the same formalism. As mentioned by the authors of Ref.
[12], the lack of exact knowledge of electron momentum-relaxa-
tion rates in magnetic metals is an important obstacle to further
progress. The so-called two-current model provides a partial so-
lution to that problem.

2. Two-current model and electrical resistivity in iron-based
alloys

The two-current model was introduced by Campbell and Fert
[13]. In that model, spin-up and spin-down charge carriers are
assumed to each have unique and well-defined effective masses
m;, m;, concentrations ny, n;, and momentum-relaxation times
7, 7. In earlier work [14], we used that model and spin-orbit in-
teraction to build a theory of spin relaxation applicable to nickel
and certain fcc nickel-based alloys. For reasons explained in that
paper, the idea of spin mixing [13,15] was ignored. In the present
section, we show how this theory must be modified to apply to bcc
alloys of iron with transition-series elements on the left of iron in
the periodic table, such as Fe-V, Fe-Cr, Fe-Mo, etc. The roles of
spin-up and spin-down electrons are exchanged.

In nickel and many nickel alloys, the spin-up Fermi level is at a
fixed location above the top of the spin-up 3d band, in a region
with low density of states and high velocity characteristic of 4s
electrons. Because of this [14], spin-up electrons carry most of the
current, and p, is much smaller than p,.

Similarly, the spin-down Fermi level of iron and bcc iron alloys
is fixed [16] in a narrow gap of the 3d band, with low density of
states. Because of this, 1/7 is small, and p, is usually larger than p,.
One difference, however, is that the spin-down electrons at the
Fermi level of iron have a stronger 3d character than the spin-up
electrons of Ni and, therefore, a larger spin-orbit interaction. The
spin-dependent resistivities p,, p, and the measured resistivity p
are given by

py = myf@myry),  p = mfe*n 1), @)

o1

=p o 3)
In 1966, Gomes and Campbell [17] recognized that the scattering
potential created by a transition-metal solute atom in Ni, Fe, or Co is
too strong for the first Born approximation to be valid for d - d
scattering. For transition-metal solutes V, Cr, Mo, etc. on the left of
iron in the periodic table, the potential is repulsive, and a scattering
resonance is present [17] near the top of the spin-up 3d band of an
iron alloy, close to the Fermi level. The direct effect of the resonance
is to increase the spin-up 3d electron probability on the scattering
solute atom, in a ratio rr. Then, in turn, 2 is increased.

In the alloys considered here, the atomic moment is much

larger on iron atoms than on solute atoms [ 18]. This provides [19] a
direct experimental confirmation of the idea that electron

probabilities are different on the two kinds of site. Also, the re-
sulting difference in exchange potential reinforces the resonance
for spin-up electrons, and decreases it for spin down [20]. There-
fore, for simplicity, we will assume that the scattering resonance is
present only in the spin-up band.

Scattering theory provides [21,22] a formula for 1/z; valid even
when the first Born approximation fails. We consider a spin-up 3d
electron in an initial Bloch-wave state ¢;; of wave vector k and
symmetry index m=1-5. It is an energy eigenstate in the absence
of scattering. This Bloch wave encounters the potential V (r) of the
crystal containing scattering solutes located at random locations.
The relaxation rate to similar outcoming spin-up 3d Bloch waves

b is [21]

1ry = @[] < GSH V@) = Vg > Dy Er,

b, = Wn@EN VD, = U (DEXT] 2,
Bt = (a2 125 Gl & (6 = . (4)

Here, ¢ is [21] what has become of the incoming Bloch wave
¢, after entering the region of the scatterers. It is not a plane
wave anymore. The structure of this scattering state includes an
enhanced value of the electron probability ‘Cﬁ(m‘z at location 1 if
that location is that of a solute atom. Also, D; is the spin-up density
of states, £2 the crystal volume, ¢2*(r) a spin-up 3d atomic state.
Finally, the so-called virtual-crystal potential V is [23] some real-
valued average of V (r) over the crystal which has the periodicity of
the crystal lattice. The Bloch functions are defined as eigenstates of
a hamiltonian where V is the potential energy. In Eq. (4), the value
of the matrix element must still be averaged over equilibrium
distributions of both k, m and k', m'.

For each value of the solute concentration x, Nordheim [23]
chose the value of V so that the coherent forward scattering
amplitude would vanish. In that manner, he was able to show that
the T=0 resistivity of a concentrated alloy B;_,A, is proportional to
X(1—x) at T=0. The resistivity is maximum for x = 0.5 = 50 at%.
Nordheim's formula was based on the first Born approximation,
valid in the absence of resonances, and we use it for p;:

p=Ax1-x+ plph. 5)

Here, A, is a constant, and pf’h an additional constant term we
have added to represent phonon and defect scattering in films at
T>0.

In Ref. [19], we derived an analytic expression which extends
the Nordheim expression to the case where the Born approxima-
tion fails because of a resonance. The original derivation was based
on an equation similar to the present Eq. (4), except that the
equivalent of ¢ was of 4s character. The derivation is still valid.
We use this for p,:

Aix(1 —x)
[X/1Csl + (1 = x)[IC41T2

h
/= +pr ’

ICal = [1+ (1 =)' = DIV2, 1Gl = [1 + x(rp — D72, 6

Here, C4 and Cp are the average spin-up electron amplitudes on
A and B atoms, with rr = IC412/ICgl2. Eq. (6) reduces to the Nordheim
formula of Eq. (5) in the special case rz = 1 where the resonance is
absent. According to Eq. (6), p, has a peak [19] at a concentration
X =~ (1 4+ rp)" L If rz>1, this x is much less than 50 at%. The coherent
potential approximation gives [24] results similar to those of Eq.
(6) but without a general analytic expression for the resistivity.

By analyzing existing data for Ap and p in Ni-Fe, Ni-Co, Ni-Mn,
Muth and Christoph [25] showed that p, has a large peak at a
moderate concentration of solute in nickel. By a similar analysis
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