ELSEVIER

Contents lists available at ScienceDirect

Journal of Magnetism and Magnetic Materials

journal homepage: www.elsevier.com/locate/jmmm

Magnetic ordering in Sc_2CoSi_2 -type R_2FeSi_2 (R=Gd, Tb) and R_2CoSi_2 (R=Y, Gd-Er) compounds

A.V. Morozkin ^{a,*}, A.V. Knotko ^a, V.O. Yapaskurt ^b, M. Pani ^{c,d}, R. Nirmala ^e, S. Quezado ^f, S.K. Malik ^f

- ^a Department of Chemistry, Moscow State University, Leninskie Gory, House 1, Building 3, GSP-2, Moscow 119992, Russia
- ^b Department of Petrology, Geological Faculty, Moscow State University, Leninskie Gory, Moscow 119992, Russia
- ^c Department of Chemistry, University of Genova, Via Dodecaneso 31, 16146 Genova, Italy
- ^d Institute SPIN-CNR, C. Perrone 24, 16152 Genova, Italy
- ^e Indian Institute of Technology Madras, Chennai 600036, India
- f Departamento de Física Teórica e Experimental, Universidade Federal do Rio Grande do Norte, Natal 59082-970, Brazil

ARTICLE INFO

Article history: Received 22 December 2015 Received in revised form 3 April 2016 Accepted 15 April 2016 Available online 16 April 2016

Keywords: Rare-earth compounds Crystal structure Magnetic properties Magnetic entropy Magnetocaloric effect

ABSTRACT

Magnetic and magnetocaloric properties of Sc_2CoSi_2 -type R_2TSi_2 (R=Gd-Er, T=Fe, Co) compounds have been studied using magnetization data. These indicate the presence of mixed ferromagnetic and antiferromagnetic interactions in these compounds. One observes a ferromagnetic transition followed by an antiferromagnetic order and a further possible spin-reorientation transition at low temperatures. Compared to $Gd_2\{Fe, Co\}Si_2$, the Tb_2FeSi_2 and $\{Tb-Er\}_2CoSi_2$ compounds exhibit remarkable hysteresis (for e.g. Tb_2FeSi_2 shows residual magnetization $M_{res}/Tb=2.45~\mu_B$, coercive field $H_{coer}=14.9~kOe$, and critical field $H_{crit}\sim 5~kOe$ at 5 K) possibly due to the magnetocrystalline anisotropy of the rare earth. The $R_2\{Fe, Co\}Si_2$ show relatively small magnetocaloric effect (i.e. isothermal magnetic entropy change, ΔS_m) around the magnetic transition temperature: the maximal value of MCE is demonstrated by Ho_2CoSi_2 ($\Delta S_m = -8.1~J/kg~K$ at 72 K and $\Delta S_m = -9.4~J/kg~K$ at 23 K in field change of 50 kOe) and Er_2CoSi_2 ($\Delta S_m = -13.6~J/kg~K$ at 32 K and $\Delta S_m = -8.4~J/kg~K$ at 12 K in field change of 50 kOe).

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The R_2 {Fe, Co}Si₂ (R=Sc, Y, Gd–Tm) crystallize in the monoclinic Sc₂CoSi₂-type structure (space group C2/m, N 12, mS20) [1-4], like the R_2 CoGe₂ (R=Sc, Nd, Sm, Gd-Tm, Lu, [5,6]). R_2 RuGe₂ (R=Y, La-Nd, Sm, Gd-Er) [7-9], Y_2RhSi_2 [10], R_2RhGe_2 (R=Nd [6], Sm [7], Ho [11]), Ho₂OsGe₂ [12] and R_2 IrGe₂ (R=Nd [13], Ho [6], Yb [14]) compounds. The rare earth sublattice seems to influence the magnetic ordering of Sc₂CoSi₂-type compounds. This structural arrangement is an example of superposition of two independent positions for the rare earth (4i) (x, 0z) sublattices and this structural arrangement in Sc₂CoSi₂-type compounds leads to the observed complex magnetism [1,2]. However, such complex magnetic ordering demands a more detailed investigation. Moreover, the magnetic properties of Sc₂CoSi₂-type compounds supplement the magnetic properties of rare earth compounds with general formula $R_2T_{3-x}X_x$ of hexagonal Gd_2Co_2I -type, monoclinic Tm₂Ge₃-type, orthorhombic Mn₂AlB₂-type, Mo₂NiB₂-type,

E-mail address: morozkin@tech.chem.msu.ru (A.V. Morozkin).

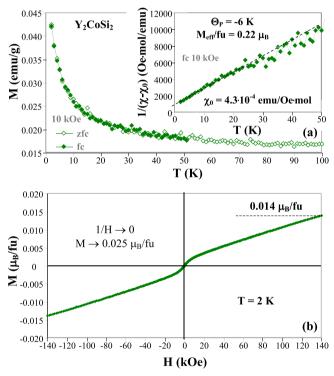
 Er_2Pd_2Si -type, La_2Ni_3 -type, tetragonal Mo_2FeB_2 -type structures [16, 17]. and others,

Recently, the magnetic properties of Gd_2CoSi_2 and Gd_2CoGe_2 were investigated in [15] via magnetic measurements and the magnetic ordering in R_2FeSi_2 and R_2CoSi_2 compounds (R=Y, Gd-Tm) was investigated via magnetic and electrical resistivity measurements in [1,2]. This work is rather a continuation of the earlier studies and the magnetic properties of R_2TSi_2 (R=Gd-Er, T=Fe, Co) compounds have been studied using detailed magnetization measurements.

2. Materials and methods

The R_2 {Fe, Co}Si₂ samples (R=Y, Gd–Er) were prepared by arcfurnace melting of stoichiometric amounts of rare earth (99.9 wt%), Fe, Co (99.95 wt%) and Si (99.99 wt%). The samples were annealed at 1070 K for 200 h in an argon atmosphere and subsequently quenched in ice-cold water. The structure, phase purity and composition of the polycrystalline samples were evaluated using powder X-ray diffraction (XRD) and electron

^{*} Corresponding author.


Table 1 Unit cell data of Sc_2CoSi_2 -type R_2FeSi_2 and R_2CoSi_2 compounds (R=Y, Gd–Er, space group C2/m, N 12, mS20).

Compound	a (nm)	b (nm)	c (nm)	β (deg)	$V(\text{nm}^3)$	R _F (%)	Ref.
Gd ₂ FeSi ₂	1.0655	0.4174	1.0093	118.95	0.39279		[2]
Gd ₂ FeSi ₂	1.06595(9)	0.41720(5)	1.00966(9)	118.973(8)	0.39282	5.7	a
Tb ₂ FeSi ₂	1.0564	0.4151	1.0014	118.84	0.38466		[2]
Tb ₂ FeSi ₂ ^b	1.05649(9)	0.41533(4)	1.00149(9)	118.847(6)	0.38492	5.4	a
Y ₂ CoSi ₂	1.0409	0.4144	0.9993	118.64	0.37831		[3]
Y₂CoSi₂ ^c	1.03991(9)	0.41452(4)	0.99897(9)	118.637(7)	0.37794	5.1	a
Gd ₂ CoSi ₂	1.0556	0.4165	1.0075	118.97	0.38753		[3]
Gd ₂ CoSi ₂	1.0554(2)	0.41616(7)	1.0076(2)	119.06(1)	0.38684	6.4	a
Tb ₂ CoSi ₂	1.0461	0.4145	1.0011	118.98	0.37973		[3]
Tb ₂ CoSi ₂ c,d	1.04573(9)	0.41450(4)	1.00062(9)	118.996(7)	0.37936	5.7	a
Dy ₂ CoSi ₂	1.0397	0.4135	0.9964	118.87	0.37513		[3]
Dy ₂ CoSi ₂	1.03932(8)	0.41324(3)	0.99615(8)	118.861(5)	0.37470	4.3	a
Ho ₂ CoSi ₂	1.0339	0.4123	0.9927	118.71	0.37114		[3]
Ho ₂ CoSi ₂ ^c	1.03352(6)	0.41271(2)	0.99283(7)	118.713(5)	0.37141	5.9	a
Er ₂ CoSi ₂	1.0276	0.4109	0.9874	118.63	0.36594		[3]
Er ₂ CoSi ₂	1.02733(6)	0.41126(2)	0.98768(6)	118.637(4)	0.36625	3.2	a

a This work

c Crystallographic data used with permission of JCPDS – International Centre for Diffraction Data.

^d Atomic position of Tb₂CoSi₂: (Tb (4i) [-0.0005(3), 0, 0.3240(4)], Tb₂ (4i) [0.1827(5), 0, 0.0956(4)], Co (4i) [0.2675(6), 0, 0.6365(8)], Si₁ (4i) [0.3462(9), 0, 0.4152(9)], Si₂ (4i) [0.4854(9), 0, 0.1258(9)].

Fig. 1. (a) Magnetization vs. temperature in applied field of 10 kOe and (b) magnetization vs. magnetic field at 2 K of Y₂CoSi₂.

microprobe analysis. The X-ray data were obtained on a Rigaku D/MAX-2500 diffractometer (Cu K α 1 radiation, 2θ =5–120 °, step 0.02 °, 1 s per step). An INCA-Energy-350 X-ray EDS spectrometer (Oxford Instruments) on the Jeol JSM-6480LV scanning electron microscope (20 kV accelerating voltage, beam current 0.7 nA and beam diameter 50 μ m) was employed to perform the microprobe analyses of the samples. Signals averaged over three points per phase were used to estimate standard deviations of 1 at% for rare earth elements (measured by L-series lines), 1 at% for Co and 1 at% for Si (measured by K-series lines). The unit cell data were derived from powder XRD using the Rietan-program [18,19] in the isotropic approximation at room temperature.

DC magnetization measurements on polycrystalline samples were carried out using a vibrating sample magnetometer (VSM attachment on PPMS Dynacool System, Quantum Design, USA) in the temperature range 2-400 K and in magnetic fields up to 140 kOe. Low field (100 Oe) magnetization data were obtained in zero-field-cooled (zfc) and field-cooled (fc) states to determine the magnetic ordering temperatures. The Curie and Néel temperatures $(T_{\rm C}$ and $T_{\rm N})$ were taken corresponding to the extremum point in the dM/dT vs. T plot and maximum in the M vs. T curve, respectively. Magnetization as a function of temperature was measured in field of 5 kOe in zero-field-cooled state to obtain effective paramagnetic moments and paramagnetic Curie temperatures. Magnetization vs. field hysteresis curve was recorded at 2 K and 5 K to obtain saturation magnetic moments, residual magnetization, coercive and critical fields. Magnetization isotherms were obtained at various temperatures, with a temperature step of 5 or 10 K and a field step of 2.5 kOe, to calculate isothermal magnetic entropy changes. The paramagnetic susceptibility was fitted to the Curie-Weiss law and the effective magnetic moments and paramagnetic Curie temperatures were obtained [20]. Magnetocaloric effect (MCE) is calculated in terms of the isothermal magnetic entropy change, $\Delta S_{\rm m}$, using the magnetization vs. field data obtained near the magnetic transition, using the thermodynamic Maxwell equation [21].

3. Results

3.1. Crystal structure

The electron microprobe and X-ray powder diffraction analyses indicate that the R_2 {Fe, Co}Si₂' samples contain the Sc_2 CoSi₂-type R_2 {Fe, Co}Si₂ ($R_{40(1)}$ {Fe, Co} $R_{20(1)}$ Si₄₀₍₁₎) main phase and 3–8 wt% of admixture CrB- or FeB-type R_3 ($R_{50(1)}$ Si₍₅₀₍₁₎) and CeGa₂Al₂-type R_3 (Fe, Co} R_2 Si₂ (R_2 Co(1){Fe, Co} R_3 CoSi₂' sample as a representative example in Fig. 1s). The admixture CeGa₂Al₂-type R_3 Fe, Co} R_3 Si₂ phases are antiferromagnets with Néel points of 8 K (GdFe₂Si₂), 4.2 K (TbFe₂Si₂), 43 K (GdCo₂Si₂), 45 K (TbCo₂Si₂), 20 K (DyCo₂Si₂), 11.2 K (HoCo₂Si₂) and 6 K (ErCo₂Si₂), whereas YCo₂Si₂ is Pauli paramagnet [17]. The admixture R_3 Si phases show antiferromagnetic

^b Atomic position of Tb_2FeSi_2 : (Tb (4i) [-0.0008(4), 0, 0.3261(4)], Tb_2 (4i) [0.1910(5), 0, 0.1056(5)], Fe (4i) [0.2743(7), 0, 0.6355(8)], Fe (4i) [0.3472(9), 0, 0.4322(9)], Fe (4i) [0.4982(9), 0, 0.1277(8)].

Download English Version:

https://daneshyari.com/en/article/1798098

Download Persian Version:

https://daneshyari.com/article/1798098

<u>Daneshyari.com</u>