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a b s t r a c t

We study a two-dimensional Heisenberg ferrimagnet composed of spin-1 and spin-3/2 sublattices
considering both exchange and single-ion anisotropies. The adjoint effects of the two anisotropies on the
possible compensation point are investigated. It is concluded that a primary condition for the com-
pensation point to appear is that the single-ion anisotropy of the smaller spins should be nonzero and be
greater than a certain value which depends on other parameters. The exchange anisotropy can raise the
compensation point slightly. The thermodynamic functions are evaluated. All the thermodynamic
functions with various parameter values are smooth no matter whether there is a compensation point or
not. Thus, from the thermodynamic functions, one is unable to judge if the compensation occurs.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

A ferrimagnetic material is of populations of atoms with op-
posing magnetic moments. Explicitly, a ferrimagnet can be parti-
tioned into two sublattices of which the atomic magnetic mo-
ments take opposing directions, like an antiferromagnetic mate-
rial. However, the opposing moments are unequal in magnitudes.
Thus, unlike antiferromagnets, a ferrimagnetic material has a
measurable net magnetization at low temperature, even in the
absence of external magnetic fields, although the magnetization
will vanish above a critical temperature TC . The magnetizations in
different sublattices have, in general, different temperature de-
pendence. Therefore, they may cancel each other at a certain
temperature Tcom, known as a compensation point, below TC. Such
compensation points have been observed in a number of real
materials, and are of obvious technological interest [1,2].

Theoretical techniques have been employed to understand the
magnetic properties of ferrimagnetic systems. Some examples are
the mean field theory [3–6], the effective field theory [7–10], the
Oguchi approximation [11], the Monte-Carlo simulation [12–14],
the Bethe recursion [15], the spin wave theory [16], the Green's
function theory [17–20] etc., and even the dynamic equation
[21,22].

In studying the ferromagnetic systems, a main topic was the

appearance of the compensation point. Usually, in the model in-
vestigations of ferrimagnetic systems, the single-ion anisotropy
and/or Ising model were used [4,10,13,14,19–22]. The aim was to
contain sufficient anisotropy to produce the compensation point.
The Ising model is the extreme case that the exchange anisotropy
is the strongest. Often, to strengthen the mechanism of the com-
pensation, the next-nearest neighbor exchanges were also in-
cluded [18–22]. In a recent research [18], only exchange anisotropy
was considered without the single-ion anisotropy. It was found
that in this case, the next-nearest neighbor exchanges, at least in
the sublattice with the lower spin quantum number, was neces-
sary for the compensation to appear. The least necessary condition
for the compensation point to appear is still desirable.

In this paper, we intend to investigate the adjoint effects of
both the single-ion and exchange anisotropies on the compensa-
tion point. We do not consider the next-nearest neighbor ex-
changes. We will clarify that when there is only the nearest
neighbor exchanges the single-ion anisotropy of the sublattice
with the lower spin quantum number should be beyond a certain
value, which depends on other parameters.

Another point we consider in this paper is the thermodynamic
functions of ferrimagnetic systems, calculations of which have not
been seen yet. We will evaluate internal energy, free energy and
entropy. Our aim is to see if the compensation point can be re-
flected in the thermodynamic function curves.

The mentioned sublattices in a ferrimagnetic lattice can in fact
be different types. One is that all the nearest neighbor sites of each
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spin in a sublattice belong to the other sublattice. This type of
ferrimagnetic structure can roughly be called Néel state. Another
one is that for each spin in a sublattice, part of its nearest neigh-
bors belong to the same sublattice and the other part belong to the
other sublattice, which can be roughly called collinear state. In this
paper, we will investigate the Néel structure.

Among the mentioned theoretical techniques, the many-body
Green's function method has advantages that it is applicable to the
whole temperature range [23] and the physical meaning is un-
derstandable in the process of deriving formalism. Therefore, we
will employ the Green's function method to study the ferrimag-
netic lattices.

This paper is arranged as follows. In Section 2, the model and
method are presented. In Section 3, results and discussions are
given. Finally, Section 4 is our conclusions.

2. Model and method

Our ferromagnetic model is a two-dimensional square lattice
composed of mixed spin-1 and spin-3/2 sublattices. Each spin-1
has four nearest spin-3/2 and vice versa, so that it is of a Néel
structure. The two sublattices are labeled by subscripts a and b,
and the spins are of spin quantum numbers =S 1a and =S 3/2b ,
respectively. The Hamiltonian reads
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where the sums i j, runs over the nearest neighbor (nn) lattice
sites. J is the antiferromagnetic exchange interaction between the
nn spins. Throughout this paper, we let =J 1. In the Hamiltonian,
we have taken into account both the exchange anisotropy and
single-ion anisotropy. The parameterη reflects the exchange ani-
sotropy and its value is between 0 and 1. The smaller the η value,
the stronger the exchange anisotropy. As η = 0, we retrieve Ising
models. The parameters Da and Db reflect the single-ion anisotropy
of the two sublattice spins, respectively. In this paper, these two
parameters are always assumed positive, meaning the easy-axis

anisotropy. The magnetizations of the two sublattices are defined
as the quantum statistical average of the spin operators, =m Sa a

z ,
and =m Sb b

z , respectively.
In order to evaluate the sublattice magnetizations, four kinds of

Green functions are introduced:
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where u is the Callen parameter [24]. We derive the equation of
motion of the Green's function via the standard procedure [23]. In
the course of derivation, the higher order Green's functions have
to be decoupled. For the terms concerning exchange interaction in
Eq. (1), we use a Tyablikov or random phase approximation (RPA)
decoupling [23,25]
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where =F a b, . For the terms concerning the single-ion anisotropy,
we adopt the Anderson-Callen decoupling [26–28],
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The Green's functions are Fourier-transformed into wave vector
space. Then, by means of the well-known spectral theorem

Fig. 1. Temperature dependence of the magnetizations for different Da values and =D 0b . (a) η = 0. The inset is the enlargement of the regions around the crosses of the ma
and −mb to clearly show that the compensation point lowers with rising Da. (b) η = 1.
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