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a b s t r a c t

To study the spin-density correlations in the ferromagnetic metals above the Curie temperature, we
relate the spin correlator and neutron scattering cross-section. In the dynamic spin-fluctuation theory,
we obtain explicit expressions for the effective and local magnetic moments and spatial spin-density
correlator. Our theoretical results are demonstrated by the example of bcc Fe. The effective and local
moments are found in good agreement with results of polarized neutron scattering experiment over a
wide temperature range. The calculated short-range order is small (up to 4 Å) and slowly decreases with
temperature.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

Spin-fluctuation theories of metallic magnetism support the
existence of the short-range order (SRO) above the Curie tem-
perature in the ferromagnetic metals but there is no agreement
about the extent of the SRO (see, e.g., [1]). The fluctuating-local-
band theory [2,3] is based upon the existence of very strong SRO
well above TC but it is unlikely to apply to any real material [4]. The
static spin-fluctuation theories [5,6] describe the paramagnetic
phase as having no appreciable SRO outside the critical region. The
situation is similar in the dynamic theories [7–9], all based on the
single-site approximation. The dynamic spin-fluctuation theory
(DSFT) [10–13] takes into account both single-site and nonlocal
interactions without mapping of the itinerant-electron system
onto an effective Hamiltonian with classical spins [8,14–17].

In the previous paper [18], we applied the DSFT to study the
SRO. Here we present new theoretical results on the spin-density
correlations in the DSFT and compare our calculations with po-
larized neutron scattering experiments [19,20], which play a major
role in testing the theory.

The polarized neutron scattering experiments have been
mainly interpreted using the spin-wave theory [19,21]. Analyzing
the peak of the scattering function, the SRO of about 15–20 Å was
obtained in the ferromagnetic metals. This interpretation was
criticized because the peak position and width of the curve are

about equal [22]. However, in [14,15] the authors still claim that
spin wave excitations persist in paramagnetic bcc Fe above TC.

Theoretical treatment of the neutron magnetic scattering for
itinerant-electron magnets in literature is rather limited (see, e.g.,
[23,24]). Here, we fill in this gap by deriving an expression for the
magnetic neutron scattering cross-section in the itinerant-electron
theory.

Our theoretical results are demonstrated by the example of bcc
Fe. We calculate the spin-density correlator as a function of dis-
tance and temperature and calculate its Fourier transform (effec-
tive moment) as a function of wavevector and temperature in a
systematic way.1 A number of magnetic characteristics, such as
effective moment and local moment, are compared with experi-
ment over a large temperature range.

The paper is organized as follows. In Section 2, we derive ex-
plicit expressions for the effective and local magnetic moments
and spatial spin-density correlator in the DSFT. We show that, at
high temperatures, the spin-density correlator reduces to the well-
known Ornstein–Zernike form and the spin-correlator in the mo-
mentum representation is given by the Lorentzian function. In
Section 3, we relate the magnetic neutron scattering cross-section
to the energy-integrated scattering function. In Section 4, we
present numerical results for bcc Fe and compare them with ex-
periment. In Section 5, we summarize the present work.
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2. Spatial spin-density correlator

2.1. Spin-density correlations in metals

We consider the spatial correlator 〈 ( ) ( )〉α αs sr 0 of the spin-
density operator δ( ) = ∑ ( − )α αs sr r ri i i , α = x y z, , . Here, σ=α

αsi
1
2

is
the α component of the spin operator of the i-th electron (σα is the
Pauli matrix), the angle brackets denote the canonical average
〈…〉 = (… )− −Z Tr e H T1 / , where = −Z Tr e H T/ is the partition function,
H is the Hamiltonian of the system of interacting electrons, and T is
temperature (in energy units).

The spatial Fourier transformation is defined by

∫ ∑= ( ) ( ) =α α α α−s s r r re d , s
1
V

s e ,q
qr

q
q

qri i

where Ω=V N WS is the volume of the crystal (N is the number of
unit cells and ΩWS is the volume of the Wigner–Seitz cell).
Translational invariance of the system leads to

∑〈 ( ) ( ′)〉 = 〈 〉α α α α
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( − ′)s s
V
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q
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Transforming the sum into an integral over the Brillouin zone and
replacing the latter by the equal-volume sphere with radius qB, we
have

∫π Ω
〈 ( ) ( )〉 = 〈 〉 ( )

( )
α α α α

−s s
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s s
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sin
dq.
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The local spin moment sL is defined by the formula

∬= 〈 ( ) ( ′)〉 ′ ( )s s r s r r rd d , 2L
2

WS

where both integrals are taken over the same Wigner–Seitz cell.
Replacing the integral by the value of the integrand at the site
multiplied by the cell volume, we write formula (2) as

Ω Ω= 〈 ( ) ( )〉 = 〈 ( ) ( )〉 ( )s s R s R s s0 0 . 3j jL
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2

Passing to the limit in (1) as →r 0 and using ( ) ≈rq rqsin , we have

∫π Ω
〈 ( ) ( )〉 = 〈 〉
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Substituting the latter into formula for the local moment (3) and
taking into account Ω π Ω= ( )2 /WS

3
BZ, we obtain

∫π
Ω
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dq.
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Thus, in order to calculate the spatial correlator and local mo-
ment, it is necessary to find the spin-density operator in the mo-
mentum representation 〈 〉α α

−s sq q . In agreement with the fluctua-
tion-dissipation theorem, the spin-density correlator 〈 〉α α

−s sq q is
related to the imaginary part of the enhanced susceptibility χ ε( )α

q ,

in the units of μg1
2

2
B
2 (g is the electron g-factor, and μB is the Bohr

magneton), by

∫π
ε χ ε ε〈 〉 = ( ) ( ) ( )

α α α
−s s B

1
2

Im d , 6q q q

where ε( ) = ( − )ε −B e 1T/ 1 is the Bose function (in the DSFT, we
assume ℏ = 1).

Next, we derive an exact expression for 〈 〉α α
−s sq q in the DSFT and

obtain its high-temperature approximation.

2.2. Spin-density correlator in the DSFT

In the DSFT, the enhanced susceptibility χ ε( )α
q is expressed in

terms of the unenhanced one χ ε( )α
q
0 by the formula

χ ε
χ ε

χ ε
( ) =
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where ˜ =u u N/ is the Fourier transform of the effective interaction
constant u. Due to strong localization of the Bose function at zero
energy, we replace it and the susceptibility χ ε( )α

q
0 by the Taylor

series in ε. As a result, formula (6) takes the form:
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where λ χ= − ˜ ( )α αu1 0q q
0 and φ χ ε= ( )α αd 0 /dq q

0 .
The interaction of the modes is taken into account by inter-

polating the static susceptibility χ α
q
0 between the uniform sus-

ceptibility χ α
0
0 and local susceptibility χ χ= ∑α α−N q qL

0 2 0 , i.e. the

function λ χ= − ˜ ( )α αu1 0q q
0 is calculated by the formula [11]

λ λ λ λ= + ( − ) ( )α α α α q q/ , 8q 0 L 0
2 2

where =q q0.62
B
2 is the average of q2 over the Brillouin zone ap-

proximated by the equal-volume sphere. The function φα
q is re-

placed, for simplicity, by its mean value φ αN L , where
φ φ= ∑ ( )α α−N 0q qL

2 . The final expression for spin-density correlator
(6) takes the form (for details, see [27])
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2.3. High-temperature approximation

We consider the high-temperature approximation ( ⪢T TC). Using
the explicit expression for the Bose function, we write spin-den-
sity correlator (6) as

∫π
χ ε ε〈 〉 =

−
( )α α

ε
α

−s s
1

2
1

e 1
Im d .

Tq q q/

Taking into account ε≈ +εe 1 /TT/ , we have

∫π
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Using the Kramers–Kronig relation (see, e.g., [24])

∫χ
π

χ ε

ε
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( )
α
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dq
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and taking into account that χ ε( )αIm q is an odd function and
χ ε( )αRe q is an even one, we obtain the high-temperature (classical)

version of the fluctuation–dissipation theorem:
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Expressing the enhanced susceptibility in terms of the un-
enhanced one according to (7), we have

χ
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Neglecting the second term, which is responsible for the intrinsic
fluctuations of the field (for details, see [13]), and using (8), we
obtain the Lorentzian function

N.B. Melnikov et al. / Journal of Magnetism and Magnetic Materials 411 (2016) 133–139134



Download English Version:

https://daneshyari.com/en/article/1798124

Download Persian Version:

https://daneshyari.com/article/1798124

Daneshyari.com

https://daneshyari.com/en/article/1798124
https://daneshyari.com/article/1798124
https://daneshyari.com

