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a b s t r a c t

This research article addresses the magnetohydrodynamic (MHD) flow of second grade nanofluid over a
nonlinear stretching sheet. Heat and mass transfer aspects are investigated through the thermophoresis
and Brownian motion effects. Second grade fluid is assumed electrically conducting through a non-
uniform applied magnetic field. Mathematical formulation is developed subject to small magnetic Rey-
nolds number and boundary layer assumptions. Newly constructed condition having zero mass flux of
nanoparticles at the boundary is incorporated. Transformations have been invoked for the reduction of
partial differential systems into the set of nonlinear ordinary differential systems. The governing non-
linear systems have been solved for local behavior. Graphical results of different influential parameters
are studied and discussed in detail. Computations for skin friction coefficient and local Nusselt number
have been carried out. It is observed that the effects of thermophoresis parameter on the temperature
and nanoparticles concentration distributions are qualitatively similar. The temperature and nano-
particles concentration distributions are enhanced for the larger magnetic parameter.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

The homogeneous mixture of ultrafine nanoparticles and base
fluid is known as nanofluid. The nanoparticles are typically made
of metals ( )Al, Cu, Ag or nonmetals (graphite, carbon nanotubes)
and the base fluid is commonly a conductive fluid such as water,
oil or ethylene glycol. The suspended nanoparticles are capable to
enhance the thermal conductivity and heat transfer performance
because the thermal conductivity of solid metals is higher than the
base fluids. Nanofluids have several engineering and technological
applications such as cooling of electronic devices, vehicle cooling,
heat exchanger, nuclear reactor, vehicle thermal management and
many others. Especially the magneto nanofluids are helpful in
wound treatments, removal of blockage in the arteries, cancer
therapy, hyperthermia, magnetic resonance imaging and many
others. Choi [1] introduced the term nanofluid and illustrated that
the suspension of nanoparticles increases the thermal properties
of base liquids. Then Buongiorno [2] developed a mathematical
model of nanofluid which exhibits the characteristics of Brownian
motion and thermophoresis. Khan and Pop [3] explored the
boundary-layer flow of nanofluid over a linear stretching surface.

Boundary-layer flow of nanofluid over a linear stretching surface
subject to the convective boundary condition is investigated by
Makinde and Aziz [4]. Mustafa et al. [5] discussed the stagnation
point flow of nanofluid induced by a linear stretching surface.
Afterwards various attempts have been made in this direction. Few
of these can be quoted through the investigations [6–20] and
several refs. therein.

The boundary-layer flow over a stretching surface is important
in various industrial and technological processes like paper pro-
duction, hot rolling, wire drawing, glass fiber, extrusion of plastic
sheets, drawing of plastic films and many others. The classical
problem of two-dimensional (2D) flow induced due to a non-lin-
ear stretching sheet was addressed by Vajravelu [21]. In this work,
the velocity of the sheet was assumed to obey the power law
distribution, i.e. =u cx .w

n Then Cortell [22] extended this problem
by considering viscous dissipation and thermal radiation. Hayat
et al. [23] examined the magnetohydrodynamic (MHD) flow over a
nonlinear stretching surface by employing the modified Adomian
decomposition and Pade approximation techniques. Rana and
Bhargava [24] examined the flow and heat transfer characteristics
of nanofluid due to a nonlinear stretching surface. Mukhopadhyay
[25] analyzed the boundary layer flow over a permeable nonlinear
stretching surface with partial slip condition. MHD flow and heat
transfer of nanofluid due to a nonlinear stretching sheet is nu-
merically addressed by Mabood et al. [26]. Mustafa et al. [27]

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/jmmm

Journal of Magnetism and Magnetic Materials

http://dx.doi.org/10.1016/j.jmmm.2016.02.017
0304-8853/& 2016 Elsevier B.V. All rights reserved.

n Corresponding author.
E-mail address: taseer_qau@yahoo.com (T. Muhammad).

Journal of Magnetism and Magnetic Materials 408 (2016) 99–106

www.sciencedirect.com/science/journal/03048853
www.elsevier.com/locate/jmmm
http://dx.doi.org/10.1016/j.jmmm.2016.02.017
http://dx.doi.org/10.1016/j.jmmm.2016.02.017
http://dx.doi.org/10.1016/j.jmmm.2016.02.017
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmmm.2016.02.017&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmmm.2016.02.017&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmmm.2016.02.017&domain=pdf
mailto:taseer_qau@yahoo.com
http://dx.doi.org/10.1016/j.jmmm.2016.02.017


discussed the axisymmetric flow of nanofluid over a nonlinear
stretching sheet. They computed both analytical and numerical
solutions of the resulting problems. Rashidi et al. [28] examined
the Darcy–Forchheimer flow and heat transfer around an obstacle
with transverse magnetic field effects.

The study of non-Newtonian fluids have great importance due
to its various industrial and engineering applications. Particularly
such fluids are encountered in the material processing, chemical
and nuclear industries, oil reservoir engineering and foodstuffs,
etc. Examples of non-Newtonian fluids are paints, shampoos,
ketchup, applesauce, certain oils, polymer solutions and many
others. All the non-Newtonian fluids through their distinct char-
acteristics cannot be distinguished by using a single relationship.
Hence various models have been proposed to describe the prop-
erties of non-Newtonian fluids. Usually non-Newtonian fluids are
classified into three categories, namely (i) differential type (ii) rate
type and (iii) integral type. The second grade fluid model [29–33]
is the simplest subclass of differential type fluids. This model de-
scribes the effects of normal stress.

The purpose of the present communication is to develop a
mathematical model for two-dimensional (2D) flow of second
grade nanofluid. Flow here is induced by a nonlinear stretching
surface. Fluid is conducted in the presence of non-uniform mag-
netic field. Thermophoresis and Brownian motion effects are
considered. Newly proposed condition with the zero nanoparticles
mass flux at the surface is taken into account. Mathematical for-
mulation is presented subject to small magnetic Reynolds number
and boundary layer assumptions. Solutions of non-dimensional
velocity, temperature and nanoparticles concentration distribu-
tions are developed via the homotopy analysis method (HAM)
[34–45]. Graphs are sketched to analyze the impacts of various
influential parameters on the velocity, temperature and nano-
particles concentration distributions. Skin friction coefficient and
local Nusselt number are tabulated and discussed.

2. Formulation

Consider the steady two-dimensional (2D) flow of an in-
compressible second grade nanofluid over a nonlinear stretching
sheet. Thermophoresis and Brownian motion effects are in-
corporated. Second grade fluid is electrically conducted due to a
non-uniform magnetic field applied in the −y direction. Here the
Hall current and electric field effects are not considered subject to
small magnetic Reynolds number. We adopt the Cartesian co-
ordinate system in such a way that −x axis is assumed along the
stretched sheet and −y axis is perpendicular to the sheet. The
sheet at =y 0 is stretched along the −x direction with velocity

( ) =u x axw
n where a, >n 0 are the constants. The boundary layer

expressions governing the flow of second grade nanofluid are
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The subjected boundary conditions for the considered flow
problem are

= ( ) = = = ∂
∂

+ ∂
∂

= =
( )∞

u u x ax v T T D
C
y

D
T

T
y

y, 0, , 0 at 0,
5

w
n

w B
T

→ → → → ∞ ( )∞ ∞u T T C C y0, , as . 6

Here u and v represent the flow velocities in the horizontal and
vertical directions respectively, μ ρ( = )v / f stands for kinematic
viscosity, μ denotes the dynamic viscosity, ρf stands for density of
base liquid, α ρ=k / f0 1 stands for elastic parameter, α1 represents
the normal stress moduli, σ stands for electrical conductivity,

( ) =
−

B x B x
n

0
1

2 denotes the non-uniform magnetic field, T stands
for temperature, α ρ= ( )k c/ f stands for thermal diffusivity of fluid, k
denotes the thermal conductivity, ρ( )c f stands for heat capacity of
liquid, ρ( )c p stands for effective heat capacity of nanoparticles, DB

stands for Brownian diffusivity, C stands for nanoparticles con-
centration, DT stands for thermophoretic diffusion coefficient, ∞T
stands for ambient fluid temperature, ∞C denotes the ambient fluid
concentration and a represents the rate of stretching. We now use
the following transformations
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Eq. (1) is now automatically satisfied and Eqs. (2)–(6) lead to
the following system
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In the above expressions K denotes the local second grade
parameter, M represents the magnetic parameter, Pr stands for
Prandtl number, Nb depicts the Brownian motion parameter, Nt
stands for thermophoresis parameter and Le stands for Lewis
number. These parameters are defined by
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The hydrodynamic flow situation is recovered for =M 0. Di-
mensionless forms of skin friction coefficient and the local Nusselt
number can be written as follows:
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