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a b s t r a c t

Recent realized silicene field-effect transistor yields promising electronic applications. Using a multi-
terminal spin density matrix approach, this paper presents an analysis of the spin polarizations in a
silicene structure of the spin field-effect transistor by considering the intertwined intrinsic and Rashba
spin–orbit couplings, gate voltage, Zeeman splitting, as well as disorder. Coexistence of the stagger po-
tential and intrinsic spin–orbit coupling results in spin precession, making any in-plane polarization
directions reachable by the gate voltage; specifically, the intrinsic coupling allows one to electrically
adjust the in-plane components of the polarizations, while the Rashba coupling to adjust the out-of-plan
polarizations. Larger electrically tunable ranges of in-plan polarizations are found in oppositely gated
silicene than in the uniformly gated silicene. Polarizations in different phases behave distinguishably in
weak disorder regime, while independent of the phases, stronger disorder leads to a saturation value.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Spintronics devices of potential industrial applications rely on
generating and manipulating spin polarizations particularly via
electric means. Pristine graphene [1] is one of the early proposed
topological insulators (TIs) [1–4] to create pure spin currents from
quantum spin-Hall effect (QSHE) driven by the spin–orbit (SO)
coupling (SOC) [1,5–7]. However, pristine graphene possesses very
week intrinsic SOC [8–10] and lacks of adoptable band gap often
required in semiconductor-based applications such as field-effect
transistors (FETs). Thus, efforts are developing in searching and
understanding hybrid graphene heterostructures [11,12] as well as
other two-dimensional systems [13–16]. For example, graphene
interacting with transition metal dichalcogenide [17–19] generates
great interests. Compared to the pristine graphene, it was pre-
dicted that the QSHE exists with a three-order enhanced TI gap in
hybridization with WS2, WSe2 [20], and MoTe2 [21]. Experimen-
tally, the MoS2-graphene heterostructure was demonstrated to
function as a nonvolatile memory cell [22], and the graphene-WS2
heterostructure was performed with transparent and flexible
substrate to act as a new generation of the FET of high ON/OFF
ratio [23].

Another two-dimensional system attracting significant atten-
tions is silicene [24–28], the silicon-based counterpart of gra-
phene, sharing the same honeycomb structure but with lattice
buckling [24,29]. The ubiquity of the silicon technology makes

silicene a good candidate to be utilized in industrial applications
[13–16]. Compared to graphene, pristine silicene not only has a
larger intrinsic SOC [29] but also renders an electrically tunable
[30,31] gap. Similar but richer characteristics [32,33] based on si-
licene were found. The quasi free-standing silicene was predicted
to exist in a superlattice with hexagonal boron nitride [34], while
strain in silicene effectively induces hole doping [35]. Using first-
principles calculations, silicene decorated by transition metals
were also investigated, predicting the existence of the quantum
anomalous Hall state [36] and of different magnetic coupling be-
tween decorated and induced Si moments [37]; substantial energy
gaps were found in heavy metal [38] as well as organic molecule
[39] adsorption. Experimentally synthesized silicene has been
realized [26–28]. Also noteworthily, recent studies have demon-
strated that the silicene can serve as the FET [40,41] operable at
room temperature; it is then intriguing to ask how silicene can be
adopted for the spin FET [42], which essentially relies on grasping
how different mechanisms in silicene alter the spin-polarizations,
particularly, with all-electric means.

This paper presents an in-depth analysis of the spin polariza-
tions based on the silicene spin FET structure. We examine how
the polarizations of the outgoing spins, transported through gated
silicene, would respond to the intricate but analyzable interplay of
the applied electric field, magnetic field, intrinsic SOCs, and dis-
order. An overall picture, aiming at giving guidelines for realizing
silicene-based electrically tunable polarizations, is given to com-
prehend the behaviors of the polarizations due to different me-
chanisms. The uniformly and non-uniformly gated silicene are
both studied, while for simplicity we model the latter by two
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opposite gate voltages. Without needing any magnetic fields, the
latter gives a larger tunable range of the detected polarizations
than the former by varying the gate or field boundary. Unlike in
the case of absent Rashba SOC [43] where only diagonal elements
of the spin-resolved conductance are required, we employ here a
spin density matrix approach [44] capable of accounting for the
spin-flip processes. We further impose the spin rotation enabling
the formalism to deal with multi-terminal case containing any
number of leads of arbitrarily injected spin directions. Especially,
we examine the rarely discussed in-plane components of spin
polarizations which commonly appear in the spin FETs.

2. Formalism

We begin with the generic tight-binding model of a buckled
honeycomb lattice [29,45,43,32]
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Here †cis ( )cis denotes the creation (annihilation) operator creating
(annihilating) an electron of spin-z (with = ↑s for spin-up and

= ↓s for spin-down) at site i, and σ σ σ σ→ = ( ), ,x y z are Pauli ma-
trices. The on-site potential ui accounts for the clean (zero =u 0i )
and disordered (nonzero random ui) systems, while γ represents
the kinetic hopping between two nearest sites 〈 〉i j, . The second
and third lines in Eq. (1) take into account the intrinsic and Rashba
SOCs through hopping between two next-nearest sites 〈〈 〉〉i j, with
strengths ΔSO and ΔR, respectively. Here sites 〈〈 〉〉i j, are connected

by the relative position vector
→
dij with ^ =

→
|
→

|d d d/ij ij ij . The time-re-
versal symmetry is preserved by assigning appropriate signs for
ν =+ 1ij (−1) if the hopping (from site i through a common site to
site j) is anticlockwise (clockwise) and μ =+ 1ij (�1) if the hopping
is in sublattice A(B) as defined in Fig. 1. In the presence of the gate
voltage by applying an out-of-plane Ez field in the z-direction
perpendicular to the buckled x–y plane consisting of honeycomb A
and B sublattices, the staggered potential Δ = lEzS ( ξ =+ 1i for
sublattice ∈i A and ξ = − 1i for sublattice ∈i B) emerges via the

last line in Eq. (1) with the buckling distance between A and B
being l. The effective Hamiltonian equation (1) allows one to de-
rive abundant phases that generally exists in the buckled honey-
comb lattice. These phases include TIs, band insulators (BIs), spin-
valley polarized metals (spin VPMs or SVPMs), marginal valley
polarized metals of type 1 (MVPM1) and type 2 (MVPM2) as de-
fined in Ref. [32].

For device geometry, we adopt the spin FET structure of a si-
licene zigzag nanoribbon with two terminals. As shown in the
schematics Fig. 1, the silicene scattering region is in contact with
two ballistic normal-metal (NM) leads labeled by p¼1 (left) and
p¼2 (right). The left lead is the injector (source) from which
electron spins are injected, while the right lead is the detector
(drain) in which the polarization of the outgoing current is mea-
sured. The two NM leads are semi-infinite and are modeled by the
square lattice with the Hamiltonian γ− ∑〈 〉

†c ci j s is js, , . Fig. 1 illustrates
how the silicene couples to the two NMs through the hopping γ .
The number of sites in a zigzag chain ( )Nx and the number of
zigzag chains ( )Ny that form the honeycomb lattice determine the
length and the width of the silicene, respectively. As an example,
the silicene in Fig. 1 is of size ( ) = ( )N N, 9, 4x y . Note that the spin
currents in the drain can be used to realize spin FETs with sending
them to the filter of either parallel or anti-parallel magnetization.
It should be noted that simply for simplicity of theoretical analysis,
we choose the NM leads because the spin polarizations are pre-
served in NMs, while in realistic spin transistor applications the
source and drain do not require being NMs.

We note that full spin polarization are described only via pure
spin states, while mixed states are also needed to depict partial po-
larization often characterized by the ensemble statistics based on the
density matrix rather than on a single wave function. We consider
here the polarization of injected spins with the ensemble of ↑θ ϕw

in, in

proportion at the spin-up state ↑θ ϕ,in in and ↓θ ϕw
in, in

proportion at

the spin-down state ↓θ ϕ,in in . Here the up and down are defined
with respect to the axis specified by the subscripts, polar angle θin

and azimuthal ϕin, in spherical coordinates. As an instance, ↑π/2,0

and ↓π/2,0 stand for the injected spins in directions +x and −x,
respectively. We reserve the notations ↑ and ↓ with the dropped
(θ ϕ= = 0in in ) subscripts for the spin-z up and down, namely, ↑ ≡ ↑0,0
and ↓ ≡ ↓0,0. The trace over the spin degrees of freedom of the
density matrix ρ = ↑ ↑ + ↓θ ϕ θ ϕ θ ϕ θ ϕ θ ϕ↑ ↓w win

in, in in, in in, in in, in in, in

↓θ ϕ,in in yields the incoming polarization vector

ρ σ
→

= ( →) ( )P Tr . 2
in

in

For example, a full (100% polarization of |
→

| ≡ =P P 1
in

in ) spin-z injection
consists entirely of ↑ ≡ ↑0,0 injected states, and thus ρ = ↑ ↑in

gives
→

= ( )P 0, 0, 1
in

; the proportion = =↑ ↓θ ϕ θ ϕw w 0.5
in, in in, in

represents

the unpolarized injection, for one arrives at
→

=P 0
in

independent of the
choices of θin and ϕin.

The ratio of the spin currents ( I I, ,S Syx and ISz) to the charge
currents Ic in the detector signifies the spin polarization of the
outgoing currents,
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Focus on the linear-response (low-bias) regime. Since the trans-
mission t matrix determines all needed currents in evaluating Eq.
(3), the matrix elements of t suffice to express the polarization
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Fig. 1. Schematics of the device geometry. The injected spins of polarization
→
P

in

depart from the normal-metal injector, enter the silicene nanoribbon (buckled
honeycomb of A and B sublattices), and then arrive with

→
P

out
(the spin polarization

of the outgoing current) at the normal-metal detector. The solid lines connecting
the semi-infinite injector/detector to the silicene represent the hopping γ between
different materials.
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