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a b s t r a c t

Attitude change of mobile magnetic gradient tensor system critically affects the precision of gradient
measurements, thereby increasing ambiguity in target detection. This paper presents a rotational in-
variant-based method for locating and identifying ferromagnetic targets. Firstly, unit magnetic moment
vector was derived based on the geometrical invariant, such that the intermediate eigenvector of the
magnetic gradient tensor is perpendicular to the magnetic moment vector and the source–sensor dis-
placement vector. Secondly, unit source–sensor displacement vector was derived based on the char-
acteristic that the angle between magnetic moment vector and source–sensor displacement is a rota-
tional invariant. By introducing a displacement vector between two measurement points, the magnetic
moment vector and the source–sensor displacement vector were theoretically derived. To resolve the
problem of measurement noises existing in the realistic detection applications, linear equations were
formulated using invariants corresponding to several distinct measurement points and least square so-
lution of magnetic moment vector and source–sensor displacement vector were obtained. Results of
simulation and principal verification experiment showed the correctness of the analytical method, along
with the practicability of the least square method.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Detection technology utilizing local magnetic anomalies of
ferromagnetic objects has become an important trend in target
detection [1]. Localization and magnetic moment estimation is
conventionally realized by measuring the total magnetic intensity
or magnetic field vectors, using magnetometers installed on a
mobile platform. The target detection technique based on mag-
netic anomaly has preferable imperceptibility in contrast to some
active detection methods, which has led to its widespread
exaltation.

Along with development of the theory as well as techniques for
the magnetic anomaly detection, several magnetic gradient tensor
systems comprising multiple magnetometers have been devel-
oped over recent years. Magnetic gradient tensor measurements
have many overwhelming majorities over conventional magnetic
scalar and vector probes [2]. Gradient measurements mainly re-
flect gradients from anomalous sources because the background
geomagnetic gradient is low. Simultaneously, gradient measure-
ments can also provide additional valuable information to assist

interpretation of anomalous sources compared to the field-mag-
nitude and field-component measurements [3].

Wynn et al. [4–6] have carried out extensive and innovative
work on localization of magnetic dipole based on magnetic gra-
dient tensor data. In recent years, a set of linear equations that
relate dipole location to magnetic field vector and magnetic gra-
dient tensor at a single measurement point was proposed for
magnetic dipole localization [3,7,8]. This set of equations is
equivalent to the Euler's equations, which are widely used in
geophysics. However, this method lacks the precision in mea-
surement of magnetic field-components, which relates dipole
position and the measurement point. In a real application, the
measurement data is magnetic field vector consisting of the
background geomagnetic field and the magnetic field generated by
magnetic sources. The magnetic anomaly field of ferromagnetic
materials is highly indistinguishable from the background geo-
magnetic field, leading to large errors in the estimated position. On
the other hand, errors in the measured orientation of the magnetic
field vectors also affect localization precision for the mobile
measurement platform. Later on, a magnetic gradient tensor sys-
tem comprising an array of eight tri-axial fluxgate magnetometers
was designed and the Scalar Triangulation And Ranging (STAR)
method based on magnetic gradient tensor invariants was pro-
posed for achieving magnetic dipole localization [9]. Though this
method overcomes the aforementioned shortcoming, it also poses
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calibration difficulties for the system. A few nonlinear numerical
estimation methods consisting of Bayesian [10] and inversion al-
gorithms [11] were also proposed to comprehend the magnetic
gradient tensor data based ferromagnetic object localization ap-
proach. But the convergence rates and localization instantaneity
still requires further improvement.

Certain combinations of magnetic gradient tensor components
are independent with reference frame, and they are invariant with
the posed variation of magnetic gradient tensor system. Hereinto,
eigenvalues of magnetic gradient tensor matrix are important in-
variants. Majid Beiki [12,13] used eigenvector analysis of gravity
gradient tensor and pseudogravity gradient tensor to locate geo-
logic bodies, where eigenvectors corresponding to the smallest
eigenvalue and the maximum eigenvalue were used. According to
Beiki et al. [14], it is inferred that eigenvector corresponding to the
intermediate eigenvalue is perpendicular to the dipole moment
vector and source–sensor displacement vector. This special geo-
metrical relationship motivates toward its utilization in the de-
tection of magnetic sources by a mobile magnetic gradient tensor
system. Hence, a novel target detection method is proposed in this
paper, based on the geometrical and mathematical relationship
among eigenvector, source–sensor displacement vector and dipole
moment. Location and magnetic moment are estimated using the
intercepted continuous data acquired from the magnetic gradient
tensor system.

This paper is organized as follows: in Section 2 we present
measurement principle and rotational invariants of magnetic
gradient tensor; in Section 3 we introduce the analytic solution of
location and magnetic moment using eigenvectors of magnetic
gradient tensor; in Section 4, a least square method is proposed for
taking into account measurement noises. In Section 5 we test the
performance of the algorithm by running simulations, which are
followed by the real experiments in Section 6. Finally, Section 7
concludes the findings of this paper.

2. Magnetic gradient tensor measurement principle and rota-
tional invariants

2.1. Magnetic gradient tensor measurement principle

Magnetic gradient tensor is the spatial rate of change of mag-
netic field vector in three orthogonal directions. B is described as
magnetic field vector, with the magnetic gradient tensor G ex-
pressed shown as multiplication of two matrices containing the
three vector components.
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where Bx, By and Bz are measured magnetic field components in
three orthogonal directions, =B i j x y z, , , ,ij denote tensor
components.

The geomagnetic field and magnetic anomaly caused by the
ferromagnetic matter are magnetostatic fields which do not con-
tain conduction currents. So the curl and divergence of the mag-
netic field vanishes according to Maxwell's magnetostatic equa-
tions.
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According to Eqs. (1) and (2), G is symmetric and only five of
the nine tensor components are independent.

2.2. Rotational invariants of magnetic gradient tensor

Magnetic gradient tensor components are relative to the
measurement reference frame. However, combinations of certain
components are independent of the choice of the measurement
frame of reference, and they are the rotational invariants of the
magnetic gradient tensor. G is a symmetric traceless 3�3 matrix,
it can be formulated into an eigenvalue problem as
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where λ1, λ2 and λ3 are eigenvalues and b1, b2, b3 are the corre-
sponding mutually orthogonal eigenvectors. The eigenvalues are
actually the rotational invariants of magnetic gradient tensor and
the other invariants can be expressed in terms of these
eigenvalues.

The eigenvalues can be found by solving the following char-
acteristic equation.
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where I0, I1 and I2 are the invariants. They are combinations of
some of the magnetic gradient tensor components:
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According to the Eq. (4), eigenvalues of magnetic gradient
tensor can be expressed as
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and λ λ λ> >1 2 3,λ λ> >01 3, λ λ| | < | |2 3 , λ λ| | < | |2 1 . λ2is the intermediate
eigenvalue that has the smallest absolute value.

3. Analytical methods based on magnetic gradient tensor in-
variants for target inversion

Rotational invariants of magnetic gradient tensor remain con-
stant while the measurement system rotates around a fixed point.
This characteristic has been widely employed in environmental,
military, and medical applications [15–16]. Eigenvector analysis of
tensor field has also been used in location and edge detection of
geological bodies [12,17], as well as in interpreting aeromagnetic
data [13]. Beiki et al. [14] proposed the geometrical and mathe-
matical relationship among the source location, the corresponding
dipole moment and the eigenvectors corresponding to the inter-
mediate eigenvalue. However, they only used the normalized
source strength, derived from eigenvalues, to interpret magnetic
gradient tensor data, and did not explicitly use the geometrical
relationship of eigenvectors. Due to fact that the geometrical re-
lationship does not vary under coordinate changes, it is used to
demonstrate estimation of location and magnetic moment of
magnetic sources in this paper, along with the derivation of the
corresponding analytical solution.
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