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a b s t r a c t

Using the many-body Green function theory, we caculate the magnetic reorientation temperature and
the anisotropic parallel susceptibility of ferromagnetic Heisenberg thin films with the exchange and
single-ion anisotropy. Particularly, we compare the effect of these anisotropies on the above mentioned
observables. On the basis of our results, one cannot generally claim that these anisotropies are equivalent
in the whole rangle of their parameters.

& 2015 Published by Elsevier B.V.

1. Introduction

Among the different experimental methods the measurement
of the magnetic susceptibility is a very powerful method for the
analysis of thin film systems. The parallel and transverse sus-
ceptibilities of ferromagnetic ultrathin cobalt films with in-plane
exchange anisotropy were measured in [1]. The isotropic exchange
interaction and the exchange anisotropy were determined by
comparison with a theoretical analysis of the susceptibilities. In
[2], the Green function theory was employed to calculate sus-
ceptibilities of ferromagnetic thin films with the exchange and
single-ion anisotropy, respectively. We note, only one value of the
strength of the exchange and single-ion anisotropy, respectively,
was used in the calculation. The calculated values of these ob-
servables were, in this case, quantitatively so similar that it was
unlikely that experimental measurements could decide on which
type of anisotropy was acting in a real ferromagnetic film. This
may appear somewhat surprising, since these anisotropies origi-
nate from very different physical mechanisms. The aim of our
work is the investigation within the Green function theory of the
magnetic reorientation temperature and the parallel susceptibility
in the ferromagnetic thin films with the exchange and single-ion
anisotropy in a wide range of their parameters.

2. Theory and fundamental equations

We consider a ferromagnetic thin film consisting of a super-
position of L atomic planes (layers) of a square lattice (L is the
thickness of the film). We start with following Hamiltonian:

H J S S S S D S S K S

g H S g H S

1
2

1
2

.
1

jk
jk j k j

z
k
z

jk
j
z

k
z

j
j
z

B
x

j
j
x

B
z

j
j
z

2
2( )∑ ∑ ∑

∑ ∑μ μ

= − + − − ( )

− −
( )

< >

− +

< >

Here the notation S S Sij k j k
x

j k
y= ±( )

±
( ) ( ) is introduced and jk< >

indicates summation over the nearest neighboring lattice sites.
The Hamiltonian consists of Heisenberg exchange interaction with
strength J 0> between the nearest neighboring lattice sites, an
uniaxial in-plane exchange anisotropy in the z-direction with
strength D 0> , a second-order in-plane single-ion anisotropy with
strength K 02 > , an external transverse Hx and longitudinal Hz

magnetic fields.
The applied Green function method in this work is based on

transformation of the fixed coordinate system x y z, ,( ) into a local
coordinate system X Y Z, , .( ) The Z-axis is set to be parallel to the
z-component of the magnetization. Note that the new coordinate
system is rotated by θμ in layer ,μ where θμ is the angle between
the z-axis and the magnetization in the layer μ. This theory was
described in detail elsewhere [3] and [4]. A remarkable result of
this theory is that the effective field aligned parallel to the Z-axis
can be written as a sum of the external magnetic field and a single-
ion effective anisotropy field:

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/jmmm

Journal of Magnetism and Magnetic Materials

http://dx.doi.org/10.1016/j.jmmm.2015.10.094
0304-8853/& 2015 Published by Elsevier B.V.

E-mail address: vilko@theor.jinr.ru
1 Permanent address: Institute of Experimental Physics, Slovak Academy of

Sciences, Watsonova 47, 040 01 Košice, Slovak Republic.

Journal of Magnetism and Magnetic Materials 402 (2016) 196–199

www.sciencedirect.com/science/journal/03048853
www.elsevier.com/locate/jmmm
http://dx.doi.org/10.1016/j.jmmm.2015.10.094
http://dx.doi.org/10.1016/j.jmmm.2015.10.094
http://dx.doi.org/10.1016/j.jmmm.2015.10.094
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmmm.2015.10.094&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmmm.2015.10.094&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmmm.2015.10.094&domain=pdf
mailto:vilko@theor.jinr.ru
http://dx.doi.org/10.1016/j.jmmm.2015.10.094


⎡
⎣⎢

⎤
⎦⎥

g H g H g H

K S Q

sin cos

2 cos
1
2

sin ,
2

B ef B
x

B
z

Z S
2

2 2

μ μ θ μ θ

θ θ

= +

+ 〈 〉 −
( )

μ μ

μ μ
( )

where Q S S S S1 1 /2S Z 2 2= − [ ( + ) − 〈( ) 〉]( ) . The rotation angle θμ is

determined from the condition that the commutator of SZ with the
Hamiltonian vanishes in the rotated frame. In [3] and [4], the ex-
pression for the equilibrium angle θμ was derived:
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Combining expression (2) with condition (3), we can write the
components of the effective field in the fixed coordinate system as
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The orientation angle θμ of the magnetization is determined by
the components of the effective field g H g Htan /B ef

x
B ef

zθ μ μ=μ .
In order to treat the magnetic properties of ferromagnetic thin

films with spin S 1= , we need the following Green function in
energy space G S S S;jk

m
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For a ferromagnetic film because of the translation symmetry,
the Green function Gjk

m ω˜ ( )( )
and the inhomogeneity U jj

m( )will depend

only on the position μ of layers involved, so that G Gjk
m mω ω˜ ( ) = ˜ ( )μν

( ) ( )

and U U .jj
m m= μμ

( ) ( ) The higher-order Green functions in the set of
equations of motion have to be decoupled to obtain a closed set of
equations of motion. We combine the usual random phase ap-
proximation for the Green function that appearing in the nonlocal
exchange term and a generalized Anderson-Callen approximation,
developed in [3], in the local anisotropy term.

After a two-dimensional Fourier transform to momentum
space one obtains the resulting equations of motion for the Green
function q qG JG, ,m mΩ Ω( ) = ˜ ( )μν μν

( ) ( )
(where J/ωΩ = ), which can be

written for the film with thickness L 3= 1, 2, 3μ ν( ( ) = ) in the
matrix form
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We assume that both surfaces of the thin layers are

symmetrical, i.e. valid A A B B,3 1 3 1= = and Aμ, Bμ (for 1, 2μ = ) are
given as follows:
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The spin-wave spectrum iΩ is obtained by solving the secular
equation: det 0Δ(Ω) = . From (8) one obtains
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where qR , /i i j i i j(Ω ) = Δ (Ω ) ∏ (Ω − Ω )μμ μμ ≠ and iΔ (Ω )μμ is obtained
from determinant iΔ(Ω ) by omitting the first row and first column

1μ( = ) or second row and second column 2μ( = ). After using the
spectral theorem we finally obtain the correlation function for the
layers 1μ = and 2μ = :
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We obtain from (8), (15) and (17) with m 0= and m 1= the
equations for magnetization SZ〈 〉μ and second moment SZ 2〈( ) 〉μ :
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Eq. (18) have to be solved numerically in order to obtain SZ〈 〉μ

and SZ 2〈( ) 〉μ . Since SZ〈 〉μ depends on the magnetizations of the other
layers via iΩ , we have to solve self-consistently the set of Eq. (18)
written for all layers, to obtain magnetizations of all layer mag-
netizations at the temperature T. The components of the magne-
tization in the fixed system x y z, ,( ) can be calculated from the
following equations:

S S S Scos , sin 19z Z x Zθ θ〈 〉 = 〈 〉 〈 〉 = 〈 〉 ( )μ μ μ μ μ μ

The susceptibility zzχμ along the easy axis will be determined
numerically as differential quotient

S h S h0 / . 20
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3. Results

The reorientation temperature TRμ of the layer m is defined as
the temperature where the longitudinal magnetization M Sz z≡ 〈 〉μ μ

vanishes; the transverse magnetization M Sx x≡ 〈 〉μ μ is not zero and
the equilibrium orientation angle 90oθ =μ . By performing nu-
merical integrations in (18) and using (19) we can estimate the
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