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a b s t r a c t

We consider a model system of two electrons confined in a two-dimensional harmonic oscillator po-
tential, with the electrons interacting via an r/ 2α potential, and subject to a magnetic field applied
perpendicular to the plane of confinement. Our results show that variations in the strength of the
electron–electron interaction generate a “band structure” in ground state metric spaces, which shares
many characteristics with those generated as a result of varying the confinement potential. In particular,
the metric spaces for wavefunctions, particle densities, and paramagnetic current densities all exhibit
distinct “bands” and “gaps”. The behavior of the polar angle of the bands also shares traits with that
obtained by varying the confinement potential, but the behavior of the arc lengths of the bands on the
metric space spheres can be seen to be different for the two cases and opposite for a large range of
angular momentum values. The findings here and in Refs. [1,2] demonstrate that the “band structure”
that arises in ground state metric spaces when a magnetic field is applied is a robust feature.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

The metric space approach to quantum mechanics [1,3] is a
new method to study the properties of quantum mechanical
functions by the analysis of the behavior of related metrics derived
from physical conservation laws. This approach has so far been
used on systems with [1,2] and without [3,4] applied magnetic
fields, and has provided new insights into Density Functional
Theory [3] and Current Density Functional Theory (CDFT) [1,2].
CDFT [5,6] is used to describe interacting systems subject to
magnetic fields, and the fundamental mapping at its core states
that, for ground states, the wavefunction is uniquely determined
by the particle density together with the paramagnetic current
density and vice versa. While this mapping is formally well de-
fined, its characteristics are unknown, and furthering its under-
standing is crucial to improve the ability of CDFT-based procedures
to predict the properties of systems in magnetic fields.

When analyzing this mapping with the metric space approach,
and for the systems studied, it was found that the ground states'

metric spaces, for all the physical functions involved in the map-
ping, displayed a distinctive “band structure”: when varying the
confinement potential [1] the “band structure” consists of allowed
(“bands”) and forbidden (“gaps”) distances, with points grouped
into bands according to the value of the magnetic quantum
number, m [1]. When varying instead the magnetic field [2], it was
observed that for wavefunctions and particle densities, this “band
structure” consisted of “overlapping bands”, with the “bands and
gaps” structure persisting for the paramagnetic current density.

In this paper we will further examine this “band structure” by
considering the effect of varying the strength of the interaction
between the electrons.

2. Metrics

In order to study the core mapping of CDFT, we require metrics
for wavefunctions, particle densities and paramagnetic current
densities. Taking conservation laws for the wavefunction norm,
particle number and z-component of angular momentum, and
following the metric space approach to quantum mechanics, we
introduce the following metrics:
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for wavefunctions ψ, particle densities ρ, and paramagnetic cur-
rent densities jp respectively [1,3]. Each of these metrics has an
“onion-shell” geometry that consists of concentric spheres [1–3] of
radius N , N, and m respectively, with N being the number of
particles.

3. Model system

We will apply our metrics to a model system which consists of
two electrons confined in a two-dimensional harmonic oscillator
potential, with the electrons interacting via an r/ 2α potential, and
subject to a magnetic field czB cω= ^ applied perpendicular to the
plane of confinement [7]. This system has the significant ad-
vantage that the Schrödinger equation is now exactly solvable for
arbitrarily strong confinement potentials, many-body interactions,
and magnetic fields. The Hamiltonian for this system is [7]
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where, in the symmetric gauge, A r B r1
2

( ) = × . By solving the
Schrödinger equation, we can generate wavefunctions, particle
densities, and paramagnetic current densities for any value of α,
the parameter controlling the strength of the interaction between
the two electrons.

We generate a family of ground states by varying α, while
holding the confinement frequency, ω0, cyclotron frequency ωc,
and all other parameters in the Hamiltonian constant. As was the
case in Refs. [1,2], we must change the value of the quantum
numberm as we change α in order to ensure that we remain in the
ground state, which is essential for the core mapping of CDFT to
hold.

We choose the value 29.756α = as a reference, and then each
metric is used to find the distance between the related function at
the reference and all of the other elements of the family. This value
of α is chosen such that most of the available distance range is
explored for both increasing and decreasing α, and that the re-
ference state lies exactly halfway within the range of values of α
for m 15= − .

4. Effect of varying the electron interaction on metric space
“band structures”

Fig. 1 shows plots of all of the distances with respect to one
another as the parameter α is varied. In the plots the distance D jp⊥

is rescaled as m m D2/ j1 2 p( + )
⊥
. All of the plots show a “band

structure” which depends on the changes in the value of the an-
gular momentum quantum number m, consisting of “bands” of
distances for each particular value of m separated by “gaps” of
forbidden distances. This is similar to what was found when
considering variations of the external confinement potential [1].
When considering Dρ against Dψ [Fig. 1(a)], the path traced out by
the curve is almost identical to that in Fig. 2 in Ref. [1], and again
depicts a monotonic relationship between Dρ and Dψ which is

almost linear for small to intermediate distances and follows the
same curve for the cases of increasing α and decreasing α. Fig. 1
(b) and 1(c) shows that the “band structure” causes discontinuities
in the gradient of the curves when we introduce the paramagnetic
current density. However, in contrast to Ref. [1], the discontinuity
in the gradient between “bands” is considerably less pronounced,
and also as m decreases, the bands cover a smaller range of dis-
tances. Comparison of the results in Ref. [1] and Fig. 1 suggests that
as the reference value of m becomes larger, the discontinuity in
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Fig. 1. Results for ground states when varying alpha (reference state
1.0, 5.5, 29.756c0ω ω α= = = , and m 15ref = − ). The reference value of α is taken

halfway between the range of values related to mref. Panel (a): Dρ vs Dψ ; (b): re-
scaled D pj ⊥

vs Dψ ; (c): rescaled D pj ⊥
vs Dρ. Values of alpha smaller than the re-

ference are labeled with circles, larger with triangles.
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