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We derive a set of equations expressing the parameters of the magnetic interactions characterizing a
strongly correlated electronic system in terms of single-electron Green's functions and self-energies. This
allows to establish a mapping between the initial electronic system and a spin model including up to
quadratic interactions between the effective spins, with a general interaction (exchange) tensor that
accounts for anisotropic exchange, Dzyaloshinskii-Moriya interaction and other symmetric terms such as
dipole-dipole interaction. We present the formulas in a format that can be used for computations via
Dynamical Mean Field Theory algorithms.
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1. Introduction

Describing a solid in terms of its magnetic properties requires
the knowledge of an effective spin model which displays the same
interesting physical properties as the many-electron Hamiltonian
whose exact solution would give the complete description of the
system. The determination of the form of the effective spin model
and of the strength of the interactions between the constituent
spins starting from the initial electronic model is, in general, a
complicated many-body problem [1-12].

We have recently derived expressions for the parameters of the
magnetic interactions within an extended (multi-orbital) Hubbard
model [12], in the presence of arbitrary relativistic couplings af-
fecting the electronic degrees of freedom (such as spin-orbit,
magnetic anisotropy, Zeeman coupling with an external magnetic
field). The formulas presented in Ref. [12], after neglecting the
vertices of two-electron Green's functions, are expressed in terms of
single-electron (but fully interacting) Green's functions G and the
single-electron (hopping) Hamiltonian T. The use of the re-
presentation via T [9,12] for computations related to real materials
requires the additional step of a tight-binding parametrization,
which is implemented only in some methods of electronic structure
calculations. On the other hand, a presentation of the formulas in
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terms of Green's functions G and self-energies 2~ would make them
more suitable for implementation via Dynamical Mean Field Theory
(DMFT) [13-15], since any DMFT calculation deals with G and X.
Writing the parameters in a way that explicitly exhibits self-en-
ergies, analogous to what was done in Refs. [4,5,10], also allows to
explicitly include the approximation of local self-energy, which is
the key assumption of DMFT. We here present the adaptation of the
formulas for the exchange tensor to this scheme.

2. Method and discussion

We consider the extended multi-orbital Hubbard Hamiltonian
[16-20,12],
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where the field operator (;5\0'6',” creates an electron with quantum

numbers {0, s, m}: o refers to a set of the orbital indices (for a basis
of localized Wannier wave functions,' these are the atom index a,

1 A different choice of the basis set of single-electron wave functions is pos-
sible, but our formalism is directly applicable only if the interaction term is rota-
tionally invariant under spin rotations performed in the new basis (otherwise, the
rotationally variant terms of the interaction should be included in the computation
of the magnetic parameters).
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the principal atomic quantum number n and the angular momen-
tum quantum number [:o0={a, n,l}), while se{1,!} and
me{-1-1+1,..,1} are the third components of the intrinsic-
spin and orbital angular momenta, respectively. Local angular
momenta are measured with respect to local reference frames,
which depend on o and might not be collinear [12]. The single-
particle Hamiltonian matrix Tg:%™, is completely arbitrary, so it
can include any relativistic single-electron terms (Zeeman cou-
pling, spin-orbit, magnetic anisotropies). The interaction Hamilto-
nian ﬁv is assumed to be rotationally invariant [12].

The goal in Ref. [12] was to map the model given by Eq. (1) onto
an effective model of classical spins e, including up to (arbitrary)
quadratic interactions, with Hamiltonian

Hgpin = 2 ey 8B, + % Z Z eo,aeof‘a,ﬂgg'/v
0 0,0" a,a’ (2)

determined by the exchange tensor Hga = H {,’:‘3 (here and in the

following o and o' are used to denote the space coordinates, e.g.
X, Y, z) and the effective magnetic field B,. It is convenient to de-

compose the exchange tensor into the three vectors 7, = 7, (an-
isotropic exchange), D, = - D, (Dzyaloshinskii-Moriya interac-

tion), and C,, = C,,, (symmetric non-diagonal exchange), defined as
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where ¢%*" is the completely anti-symmetric tensor of rank 3. The
Heisenberg model is obtained as the particular case in which

Hss = 5””'300,.

To perform the mapping, in Ref. [12] we have derived the re-
sponse of the thermodynamic potential of the electronic system
under small spatially dependent rotations of the spin quantization
axes associated with each orbital spinor denoted by o, up to sec-
ond order in the rotation angles. The derivation of such response
involves path integration over the fermionic fields after the in-
troduction of auxiliary bosonic degrees of freedom which express
the amplitudes of rotations from an initial spin configuration; the
coefficients of the interactions between the remaining bosons are
put in correspondence with the parameters of the spin model (2)
by imposing that the thermodynamic potential of the spin system
after the spin rotations is equal to that of the electrons. Excluding
the vertex contributions, the parameters of the spin model are
expressed in terms of single-electron Green's functions (which of
course include interaction effects) and the single-particle part of
the electronic Hamiltonian, T.

This procedure is similar to the one previously adopted in Refs.
[4,5] for the case of quenched orbital moments, but in Ref. [12] we

A A
have considered rotations of the local total spins So=1+8S,,

A
where I, and §, are, respectively, the orbital and intrinsic angular
momenta associated with the states o. More precisely, we have
considered rotations in the space of the single-particle eigen-

2
functions of §0 and §OZ, analogous to Ref. [9], while in Refs. [4,5]

the rotations affected the space of eigenfunctions of §02 and §oz. This
allowed us to obtain formulas for the exchange tensor that can be
separated into contributions coming from the interactions be-
tween spin-spin, orbital-orbital, or spin-orbital degrees of free-
dom of the electrons; for example, for the anisotropic exchange
parameters we have

= spin-spin orb-orb spin-orb
T o0 =T RPN+ T 05700 + THTO 4)

The terms labelled as “spin-spin” or “spin” are those contributions
to magnetic interactions that would arise if we kept the orbital

magnetic moments quenched, i.e., if we rotated only the intrinsic-
spin spinors. Analogously, the terms labelled as “orb” or “orb-orb”
arise if we rotate only the orbital magnetic moments, keeping the
intrinsic spins quenched. The terms labelled as “spin-orb” arise
only when the total local magnetic moments are rotated; these
terms should not be confused with spin-orbit coupling, which
contributes in general to all terms.

It should be noted that the possibility of rotating the total local
spins is not applicable within Density Functional Theory (DFT)
formulations, where observables are expressed in terms of the
charge density and the intrinsic-spin density. The possibility of
rotating local total spins is related to the representation of the
electronic Hamiltonian in terms of localized wave functions, which
implies a higher number of degrees of freedom with respect to DFT
(related to the fact that the set of localized states would be over-
complete in theory, or not even complete in practice due to
truncation).

The computation of the magnetic parameters via DMFT is
greatly simplified if they are formulated in terms of single-particle
Green's functions and self-energies 2~ in magnetically ordered
states, since this avoids the initial step of a tight-binding para-
meterization of the single-electron Hamiltonian T. To remove T
and introduce X, we use the equations of motion for Matsubara
Green's functions (Dyson equations), which we write in general
matrix notation as

(@ — ip)G(w) + iT-G(lw) = 1 - Z(iw)-G(iw),
(@ — iw)G(w) + iGliw) T=1 - G(iw)-Z (iw). 5)

These equations hold for the Matsubara Green's functions defined
according to the following convention:
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where o = (2n + 1)z/p is a fermionic Matsubara frequency, /5 being

the inverse temperature. As a particular case, the single-electron
density matrix is given by
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We now have to distinguish between the magnetic parameters
that can be computed from the second-order response in the ro-
tation angles and those which are computed from the first-order
response. From Ref. [12], we note that the former terms can all be
written in terms of the following quantity:

1
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where X, Y € {spin, orb} refer to either spin- or orbital-related
terms, that is,
Sspin

_ _1
oa =Soa = 700

SAD = 1y, 9

where s,, is an intrinsic spin matrix (o, is a Pauli matrix), while l,,
is an orbital angular momentum matrix. In Eq. (8) we have used
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