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a b s t r a c t

Cluster Monte Carlo methods for the classical spin Hamiltonian of FePt with long range exchange in-
teractions are presented. We use a combination of the Swendsen–Wang (or Wolff) and Metropolis al-
gorithms that satisfies the detailed balance condition and ergodicity. The algorithms are tested by cal-
culating the temperature dependence of the magnetization, susceptibility and heat capacity of L10-FePt
nanoparticles in a range including the critical region. The cluster models yield numerical results in good
agreement within statistical error with the standard single-spin flipping Monte Carlo method. The var-
iation of the spin autocorrelation time with grain size is used to deduce the dynamic exponent of the
algorithms. Our cluster models do not provide a more accurate estimate of the magnetic properties at
equilibrium.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

The temperature dependence of the magnetic and thermal
properties of FePt nanoparticles in the critical region close to the
Curie temperature Tc is of interest in the theory of critical
phenomena and also of practical relevance in thermomagnetic
writing on granular thin films. The high uniaxial perpendicular
magnetic anisotropy K 10 erg/cm8 3≈ makes FePt a good candidate
for next generation hard disk drives. Application of the finite size
scaling theory [1–3] allows an estimate of the critical exponents
describing the divergence of the magnetization m t∼ | |β , suscept-
ibility tχ ∼ | | γ− , specific heat c t∼ | | α− and spin correlation length

tξ ∼ | | ν− of the bulk material at the phase transition point, where
t T T T/c c= ( − ) is the reduced temperature. Monte Carlo simulations
of FePt nanoparticles have suggested that the critical exponents
appear to be in agreement with the universality class of the 3D
Ising model [3], however, the accuracy of the calculations was
insufficient to resolve this issue beyond doubt. The critical ex-
ponent ν is required to determine the grain size dependence of the

Curie temperature [2] which is a major concern in thermo-
magnetic writing where the trend is toward smaller grains with
wider Tc dispersions. To first approximation, Curie point writing
occurs when the medium has cooled to Tc, so local variations of the
Curie temperature result in wider transition width. In multiscale
modeling, atomistic simulations based on a classical spin
Hamiltonian of FePt were used to calculate the temperature
dependence of the magnetic properties m, χ of nanoparticles and
the data were fitted to functions that extrapolate to the critical
behavior of an infinite system [4]. The fitted functions m T T, χ( ) ( )
were then used as an input in micromagnetic models of the
thermomagnetic writing process using the Landau–Lifshitz Bloch
equation that allows efficient simulation of heat-assisted recording
assuming homogeneous magnetization within each grain to
reduce the CPU time.

Statistical errors using the standard Metropolis Monte Carlo
methods are significant in simulations of magnetic systems in the
critical region as a result of two reasons:

1. Critical fluctuations arise from the presence of large clusters
of spins pointing in the same direction. The divergence of the
spin correlation length at Tc results in divergence of the size
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of fluctuations in magnetization and energy. Critical fluctua-
tions increase the size of the statistical errors in the simula-
tions, for instance for a multispin system consisting of N
atomic spins with moment μs the error in the magnetic
susceptibility per spin is N mVar Varsδχ βμ= ( ( )), where

k T1/ Bβ = and m m mVar 2 2( ) = 〈 〉 − 〈 〉 is the variance of the
distribution which is known to be of gaussian form [5]. Cri-
tical fluctuations are an intrinsic feature of any Monte Carlo
model which correctly samples the Boltzmann distribution
and cannot be avoided.

2. Critical slowing down, i.e. the spin autocorrelation time τ that
is defined from the time-displaced autocorrelation function

t m m t m e0 0 1t2 /ϕ ϕ( ) = 〈 ( ) ( )〉 − 〈 〉 = ( ) ( )τ−

diverges at Tc for bulk material as zτ ξ∼ , where z is a dynamic
exponent. For finite systems a cut-off is imposed by the linear
size Lξ = , so Lzτ ∼ . The error on the magnetization

t m2 / Varmaxσ τ= ( ) ( ) is dependent on the number
n t /2max τ= of uncorrelated spin configurations in a run of
duration tmax after equilibration. The time to generate a single
uncorrelated state is LCPU

d zτ ∼ + where d¼3 is the di-
mensionality of our system (FePt nanoparticles) and is
therefore strongly dependent on the dynamic exponent.

The fundamental reason for the large value of the dynamic
exponent z in the Metropolis algorithm is the divergence of the
spin correlation length. For instance, in the Ising model, large
domains of spins pointing in the same direction are flipped slowly
starting with spins close to the domain boundary where the ex-
change coupling is lower, whereas the flip probability of spins in
the interior of a domain is low.

Cluster flipping algorithms were proposed that reduce the ex-
ponent z and solve the problem of critical slowing down. The basic
idea is to look for clusters of similarly oriented spins and flip them
in their entirety. Cluster algorithms were applied to Ising and
Heisenberg Hamiltonians with nearest neighbor interactions [6,7]
and Ising models with long range interactions [8]. The classical
spin Hamiltonian of FePt, which is of the Heisenberg type with
long range exchange interactions and also includes magnetic ani-
sotropy and antiferromagnetic coupling for some Fe–Fe pairs [9]
has not been considered before. In this paper, we show that it is
possible to construct cluster-flipping algorithms for the FePt Ha-
miltonian that satisfy detailed balance and ergodicity.

2. The model

A detailed description of the atomic spin model of the chemi-
cally ordered L10 phase of FePt using ab initio calculations of non-
collinear magnetic configurations [9] and the application to small
nanoparticles [3] is given elsewhere. It consists of a superlattice of
alternating Fe and Pt atomic planes along the (001) direction with
fct structure. The itinerant Pt atomic moments are incorporated
into effective Fe atomic moments 3.23s Bμ μ= where Bμ is the Bohr
magneton. The effective classical spin Hamiltonian is

J K x y z, , ,
2i j

ij i j
i

i i
z

,

2( )∑ ∑σ σ σ α= − ˜ · − =
( )α

α α α

<

Here iσ→ are the Fe sublattice spin moments treated as unit vectors

in the classical limit, K k m Ki Fe i
0= + ′( ) are effective single ion ani-

sotropy parameters, mi is the number of Pt nearest neighbors,
k 0.097 meVFe

0 = −( ) and

⎡⎣ ⎤⎦J J n I K2 3ij ij ij zδ˜ = + + ′ ( )
α

α

where Jij are effective Fe–Fe exchange integrals that decay slowly
with distance as a result of the Pt itinerant electrons and
I¼0.351 meV. The term n K2 ij ′ arises from two-ion magnetic ani-
sotropy, where nij is the number of Pt atoms that mediate addi-
tional exchange coupling between Fe spins at sites i and j and
K 0.0223 meV′ = .

The FePt nanoparticles in the present model are cubic and their
magnetic state is described by an array of N N Nx y z× × Fe spins
where the x and z axes are along the [110] and easy (c)-axis, re-
spectively. The mean spin polarization of the grain is

m N1/ N
i1 σ→ = ( ) ∑ → where N N N Nx y z= is the total number of Fe

atoms. The lattice parameters a¼3.88 Å and c¼3.7 Å are con-
sidered in the calculation of the exchange integrals Jij. The range of
the Fe–Fe exchange coupling, up to 10 unit cells, is more extended
than previous models [2,3] and is the same as in Ref. [1]. Beyond
this cut-off region, the coupling is negligible.

The temperature dependence of the magnetic properties of
FePt nanoparticles and finite size effects were studied using the
Monte Carlo method [3]. The Monte Carlo method calculates the
thermodynamic average of an observable A μ( ) where the state μ is
here defined by the set of Fe spins in the grain i N, 1,iσ{→ = … }, by
generating a Markov process to construct a random sequence of
states leading to equilibrium. A transition probability W μ ν( → ) is
specified between successive states ,μ ν that satisfies the condition
of detailed balance

p W p W 4μ ν ν μ( → ) = ( → ) ( )μ ν

where p pandμ ν are the probabilities of the states μ and ν at
equilibrium respectively. The transition probability is determined
by the selection probability of the Monte Carlo move g μ ν( → )
providing freedom to choose a Markov process and the acceptance
ratio A μ ν( → ) [10]

W g A 5μ ν μ ν μ ν( → ) = ( → ) ( → ) ( )

The ratio of the transition probabilities for Boltzmann distribution
at equilibrium is therefore

g A
g A

e
6

E Eμ ν μ ν
ν μ ν μ

( → ) ( → )
( → ) ( → )

=
( )

β− ( − )ν μ

The moves g μ ν( → ) should be selected so that the acceptance
ratio is maximized. A successful cluster algorithm was formulated
by Wolff for the Heisenberg model with nearest neighbor inter-
actions [7] and is extended here to the case of the FePt spin
Hamiltonian.

We consider two spin configurations μ and ν that differ by the
flipping of a single cluster, by reflection of all spins in the cluster in
the plane perpendicular to a random direction specified by a unit
vector n→. The group of spins constituting the cluster may not be
simply connected. We denote by i A,iσ{→ ∈ } spins belonging to the
cluster and the rest of the spins in the grain by j B,jσ{→ ∈ }. The
change in the energy following the flip of the cluster is

E E E 7ex clΔ = Δ + Δ ( )

The first term is the change in the energy of the exchange in-
teraction between the spins in the cluster and the exterior region.
By symmetry J J Jij

x
ij
y
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The second term is the change in the internal energy of the
cluster
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