Contents lists available at ScienceDirect

Journal of Magnetism and Magnetic Materials

journal homepage: www.elsevier.com/locate/jmmm

Effect of Mg²⁺ and Ti⁴⁺ dopants on the structural, magnetic and high-frequency ferromagnetic properties of barium hexaferrite

Mohammad H. Shams^a, Amir S.H. Rozatian^{a,*}, Mohammad H. Yousefi^a, Jan Valíček^b, Vladimir Šepelák^{c,d}

^a Department of Physics, University of Isfahan, Hezar Jarib Street, Isfahan 81746-73441, Iran

^b Institute of Physics, Faculty of Mining and Geology, VŠB – Technical University of Ostrava, 17. Listopadu 15, 70833 Ostrava-Poruba, Czech Republic

^c Institute of Nanotechnology, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany

^d Slovak Academy of Sciences, Watsonova 45, 04001 Košice, Slovakia

ARTICLE INFO

Article history: Received 27 February 2015 Received in revised form 27 July 2015 Accepted 23 August 2015 Available online 8 September 2015

Keywords: Hexaferrite Mössbauer spectroscopy Magnetic properties Ferromagnetic resonance

ABSTRACT

The doped barium hexaferrite, $BaFe_{12-x}(Mg_{0.5}Ti_{0.5})_xO_{19}$ with $1 \le x \le 5$, is synthesized by a solid state ceramic method. Its crystalline structure, morphology, as well as static and dynamic magnetic properties are investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), vibrating sample magnetometry, and vector network analysis, respectively. The cation distribution of Mg^{2+} and Ti^{4+} in the hexagonal structure of $BaFe_{12-x}(Mg_{0.5}Ti_{0.5})_xO_{19}$ is investigated by ⁵⁷Fe Mössbauer spectroscopy. The effect of Mg^{2+} and Ti^{4+} dopants on static and high-frequency magnetic properties of the ferrite is studied.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Hexagonal ferrites have attracted the attention of researchers and engineers since they were discovered. These materials are widely utilized as magnetostatic and electromagnetic devices. The M-type ferrite, with the crystal structure similar to that of mineral Magnetoplumbite, and the composition $BaFe_{12}O_{19}$, is the best known ferrite [1]. It has a large magnetocrystalline anisotropy, stabilized by the strong exchange interactions among the Fe ions. By substituting Fe³⁺ with other ions, its magnetocrystalline anisotropy can be greatly reduced, and even switched from the *c*-axis to the basal plane. An extensive work has been done to modify the magnetic parameters of M-type hexaferrites by substituting Fe³⁺ with other cations or cation combinations such as Ce, Al, Ga, Cr, Co-Ti, Ru-Ti, Mn-Cd-Zr, Zn-Nb, Cr–Ga, Co–Zr, and so forth, as recently published [2–11]. It should be emphasized that in previous work on the Mg-Ti substituted barium hexaferrite [12–16], the effects of only individual concentrations of dopants (mostly in a narrow *x* range) have been studied. Therefore, this paper attempts to study in detail the structural and magnetic characteristics, and high-frequency ferromagnetic properties of $BaFe_{12-x}(Mg_{0.5}Ti_{0.5})_xO_{19}$ as a function of the substituted amount of dopants in a broad range $(1 \le x \le 5)$.

2. Experimental

2.1. Preparation of ferrite powders

BaFe_{12-x}(Mg_{0.5}Ti_{0.5})_xO₁₉ (x=0-5) powders were prepared from barium carbonate (BaCO₃), iron oxide (Fe₂O₃), magnesium oxide (MgO), and titanium oxide (TiO₂). The starting materials were mixed in a planetary mill for 5 h and sintered in air at 1250 °C for 1 h. Finally, the sintered ferrites were crushed again in a mill for 18 h to obtain powders.

2.2. The preparation of composite samples

To measure the complex permittivity and permeability using a vector network analyzer, the powdered ferrite was added to paraffin, dissolved in toluene and vibrated for 5 min in an ultrasonic bath. It was then kept at 80 °C for 10 h to remove the toluene from the mixture and after that, it was cooled to room temperature. The as-prepared composite samples (containing 70 wt% of the ferrite and 30 wt% of paraffin) were measured in the form of the standard rings (outer diameter: 7 mm, inner diameter: 3.04 mm, thickness: 2 mm) and rectangles (with two various sizes – length: 10.66 mm, width: 4.31 mm, thickness: 2 mm and length: 7.11 mm, width: 3.55 mm, thickness: 1.5 mm).

^{*} Corresponding author. Fax: +98 313 793 4800. E-mail address: a.s.h.rozatian@phys.ui.ac.ir (A.S.H. Rozatian).

2.3. Structural characterization (XRD, SEM)

XRD patterns of the powder samples were recorded in the range of 15–80 (2 θ) degrees using a X'Pert Pro MPD, PANalytical, diffractometer with Cu K α radiation (λ =1.5406 Å). The characteristic lattice parameters, *a* and *c*, were calculated according to the following formula [17]:

$$\frac{1}{d\frac{2}{hkl}} = \frac{4(h^2 + hk + k^2)}{3a^2} + \frac{l^2}{c^2},\tag{1}$$

Fig. 1. XRD patterns of the as-prepared doped barium ferrites $BaFe_{12-x}(Mg_{0.5}Ti_{0.5})$ (x=1-5).

where *h*, *k* and *l* are Miller indices and *d* is interplanar spacing as determined by the Bragg formula, $2d \sin \theta = n\lambda$. The unit cell volume was calculated from the lattice parameters *a* and *c* using the following formula [18]:

$$V_{\text{cell}} = \frac{\sqrt{3}}{2}a^2c.$$
 (2)

The X-ray density, ρ_x , of the material was calculated according to the relation:

$$\rho_x = \frac{2M}{N_a V_{\text{cell}}} \tag{3}$$

where M represents the molar mass of the sample, and N_a is Avogadro's number.

Electron micrographs were taken using a Philips XL30 scanning electron microscope (SEM) with the accelerating voltage of 25 kV. The particle size of the samples was determined from the SEM imaging.

2.4. Mössbauer spectroscopy

⁵⁷Fe Mössbauer spectra of the samples were taken in transmission geometry at 293 K. A ⁵⁷Co/Rh γ-ray source was used. The velocity scale was calibrated relative to ⁵⁷Fe in Rh. *Recoil* spectral analysis software [19] was used for the quantitative evaluation of the Mössbauer spectra. A Lorentzian line width of 0.274 mm/s, resulting from the fit of the spectrum of BaFe₁₂O₁₉ was chosen for the fit of the spectra of the substituted hexaferrite, BaFe_{12-x}(Mg_{0.5}Ti_{0.5})_xO₁₉ (*x*=1-5). The distribution of the ferric cations over the five non-equivalent cation sublattices provided by the hexagonal ferrite structure was calculated from the Mössbauer subspectral intensities, assuming the same recoilless fractions of the Fe³⁺ cations on all available crystal sites.

Fig. 2. a) XRD patterns of the Mg–Ti substituted barium hexaferrites in the 2θ range of $32-34.5^{\circ}$. b) The lattice parameter, *c*, and c) the volume of the unit cell, *V*, for BaFe_{12-x}(Mg_{0.5}Ti_{0.5})_xO₁₉ (x=1-5) vs. dopant content.

Download English Version:

https://daneshyari.com/en/article/1798448

Download Persian Version:

https://daneshyari.com/article/1798448

Daneshyari.com