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a b s t r a c t

The magnetic properties of a mixed spin-1/2 and spin-1 Heisenberg ferrimagnetic system on a two-
dimensional square lattice are investigated by means of the double-time Green's function technique
within the random phase decoupling approximation. The role of the nearest-, next-nearest-neighbors
interactions and the exchange anisotropy in the Hamiltonian is explored. And their effects on the critical
and compensation temperature are discussed in detail. Our investigation indicates that both the next-
nearest-neighbor interactions and the anisotropy have a great effect on the phase diagram.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

In physics, a ferrimagnetic material is one that has populations
of atoms with opposing magnetic moments, as in anti-
ferromagnetism; however, in ferrimagnetic materials, the oppos-
ing moments are unequal. Thus, unlike antiferromagnets, these
materials have a net magnetic moment at low temperature that
vanishes at a critical temperature Tc. In addition, since the sub-
lattice moments have, in general, a different temperature depen-
dence, there is the possibility that they may exactly cancel at some
lower temperature Tcom, known as a compensation point. Such
compensation points have been observed in a number of real
materials, and have obvious technological interest [1,2].

In the last years, many theoretical models have been used with
different techniques to understand their magnetic properties. For
example, Mert has used Green's function for a mixed spin-1 and
spin-2 Heisenberg ferrimagnetic system [3]. Oitmaa and Enting
have used the high-temperature expansions for a mixed spin-1/2
and spin-1 ferrimagnetic Ising model [4]. Keskin et al. have used
the Glauber-type stochastic dynamics for a mixed spin-1/2 and
spin-3/2 Ising model [5]. Andrej et al. have studied the magnetic
susceptibility of the mixed spin-1 and spin-1/2 anisotropic Hei-
senberg model based on the Oguchi approximation [6]. Bayram

et al. have used the mean field method for a mixed spin-1/2 and
spin-3/2 Ising ferrimagnetic model [7]. Buendĺa and Cardona have
used the Monto Carlo technique for a mixed spin-3/2 and spin-1/2
Ising ferrimagnetic model [8]. Silvia and Michal have used the
generalized mapping transformation technique for the mixed
spin-1/2 and spin-S Ising ferrimagnetic model [9]. Zhang and Yan
have used the effective field method for a mixed spin-1/2 and
spin-1 Blume–Capel model [10].

One general conclusion emerges from the above work, i.e., in
order to obtain a compensation point, single-ion anisotropy terms
appear to be necessary. Therefore, the single-ion anisotropy is
included in general investigation. Nevertheless, less investigation
concerns ferrimagnetic model with an exchange anisotropy. In this
paper, we consider an exchange anisotropy for a mixed spin-1/2
and spin-1 Heisenberg ferrimagnetic model on a square lattice.
Our investigations show that a compensation point can also
emerge in an exchange anisotropy.

The outline of this paper is as follows. In Section 2, the model
and fundamental equations are presented. In Section 3, results and
discussions are given. Finally, Section 4 contains conclusions.

2. Model and method

The Hamiltonian of a mixed spin-1/2 and spin-1 Heisenberg
ferrimagnetic model on a two-dimensional square lattice may be
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where s¼1/2 and S¼1. The sums i j,〈 〉 and i j,[ ] run over the
nearest-neighbor (nn) and next-nearest-neighbor (nnn) lattice
sites, respectively. J1 is the antiferromagnetic nn exchange inter-
action, J2 and J3 are the ferromagnetic nnn exchange interaction.
η1, η2 and η3 are the exchange anisotropy parameters. The ferri-
magnetic lattice can be partitioned into two equivalent sublattices,
labeled by s and S, respectively. Therefore, the sublattice magne-
tization can be defined as m s m S,s i

z
S i

z= 〈 〉 = 〈 〉.
In the following, we introduce four kinds of Green's functions

to obtain the sublattice magnetization and the energy of the
magnetic excitation:

G s e s G S e s G S e S

G s e S

; ; ; ; ; ;

; ,

ss i
us

j Ss i
us

j SS i
uS

j

sS i
uS

j

j
z

j
z

j
z

j
z

= 〈〈 〉〉 = 〈〈 〉〉 = 〈〈 〉〉

= 〈〈 〉〉

+ − + − + −

+ −

where u is the Callen parameter [11]. We derive the equation of
motion of Green's function by the standard procedure [12]. In the
course of derivation, the higher order Green's functions have to be
decoupled. In this paper, we use the random phase approximation
(RPA) decoupling [11,12]
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where A s S,= . The equal-time correlation function
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is calculated via the spectral theorem [11,12]. It is expressed by
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where N is the number of lattice sites. The summation over wa-
vevector k runs over the first Brillouin zone. Green's functions are
Fourier-transformed into wavevector space. After that, the equal-
time correlation function e A A kuA

i ii
z

〈 〉( )− + is calculated via the spec-
tral theorem. For u¼0, u A2 zθ( ) = 〈 〉, we obtain
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Thus, the total magnetization M of system is defined as

M m m 10s S= + ( )

3. Results and discussions

In Fig. 1, we discuss the effect of J3 on the magnetization when
the nnn interaction in sublattice s is not included. As seen from
Fig. 1(a)–(c), they exhibit two types of magnetization behavior
according to the Néel classification [13]. For example, for a strong
anisotropy (see Fig. 1(a)), the magnetization curves are of Q-type
behavior when J3¼0, 0.1 and 0.5. For a weak anisotropy (see Fig. 1
(b) and Fig. 1(c)), they are of P-type behavior when J3¼0.8 and 1.
Nevertheless, only the P-type magnetization curves exist for the
large value of J3 (see Fig. 1(d)). Compared with a strong anisotropy
case, the total magnetization in a weak anisotropy case is more
sensitive to the change of J3.

Meanwhile, we notice that Fig. 1(a)–(c) show the total mag-
netization dependence on temperature for some small values of J3.
Fig. 1(d) exhibits the sublattice magnetization and the total mag-
netization as a function of temperature for some large values of J3.
Our results show that the magnetization simply goes to zero at the
critical temperature. The compensation temperature does not
appear for arbitrary J3 value when the J2 is not included. And one
can find from Fig. 1(d) that, the s sublattice magnetization is in-
sensitive to the change of J3 in the whole temperature range as J2 is
zero, whereas the S sublattice magnetization is sensitive to the
change of J3 in the high temperature. In low temperature, the S
sublattice magnetization is also insensitive to J3. It shows that the
case of m m 0s S= − ≠ will not exist. This also means that the
compensation point cannot appear.

In Fig. 2(a) and (b), we discuss the effect of J2 on the magne-
tization in a strong and weak anisotropy when the J3 is not in-
cluded. One can see that the compensation point appears when
the J2 is considered. For different anisotropies, the J2 hardly affects
the compensation temperature, whereas the critical temperature
increases with the increasing of J2. For a fixed J2 (see Fig. 2(c)), the
TC and Tcom increase with increasing J3. Nevertheless, the Tcom is
more sensitive to the change of J3 than TC.

In Figs. 3, 4 and 5, the impact of exchange interaction, aniso-
tropy on the compensation and critical temperature is explored
respectively in detail. For fixed J1 and J2 (see Fig. 3), the TC de-
creases with increasing η (here 1 2 3η η η η= = = ). This is because
that the anisotropy impedes the quantum fluctuation. It leads to a
large TC. However, the anisotropy hardly affects the Tcom. Mean-
while, one find that the Tcom is very sensitive to the change of J3. It
can more easily be seen from Fig. 4. In Fig. 4, we show the Tcom and
TC as a function of J3 for 0.5η = and J 11 = when J2¼4, 6 and 8. It
clearly exhibits that the Tcom rapidly increases with increasing J3.
And it also shows that the TC with larger J2 and J3 is larger.

Fig. 5 exhibits the compensation temperature dependence of J2
for η¼0.5 and J 11 = when J3¼0, 0.5 and 1. For fixed J1 and J3, the
values of Tcom almost unchange with the change of J2. Note that the
compensation point does not always appear when the J2 is in-
cluded. But there is a minimum value of J2 (i.e., Jmin

2 ), and only

when J Jmin
2 2≥ , the compensation point can appear. Moreover, the

value of Jmin
2 becomes large with the increasing J3. For example,

when J3¼0, 0.5 and 1, the corresponding values of Jmin
2 are 1.8,
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