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a b s t r a c t

In the wake of the recent investigation of inhomogeneous exchange effects within ferrites [Kuetche et al.,
J. Magn. Magn. Mater. 3374 (2015) [1]], we pay a particular interest to the magnetic solitons and their
dynamics. We study extensively the interactions between these waves while depicting the two-soliton
features and the three-soliton scattering scenarios of the waveguides. As a result, we find that these
typical head-on collisions are actually elastic. Discussing deeply the results, we determine the individual
shifts of the interacting waves and we find that they actually comprise two parts: the first one relates to
the nonlinear character of the interactions and the second one characterizes the motion of the smaller
soliton along the larger one. Additionally, we depict the energy density of the interacting waves and we
address the physical implications of the previous results.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

In relation with the increasing interests in advanced magnetic
information storage and data process element, a proper and de-
tailed understanding of the micromagnetic structure in microsized
and nanosized magnets becomes more crucial. In the wake of
these interests, Kuetche et al. [1] regarded recently in a leading
attempt a ferromagnetic slab of 0.5 mm thickness while in-
vestigating deeply the effects of inhomogeneous exchange within
the material. As a result, they derived the governing coupled
system given by [1]

B BC B sB , 1axt x xx x= + ϱ − ( )

C BB , 1bxt x= − ( )

arising from the nonlinear dynamics of magnetic polaritons in the
medium. The variables x and t are generic spacelike and timelike
coordinates, respectively, while the physical meanings of the ob-
servables B and C will be reviewed briefly in the next section. The
constant s is the first-order dimensionless Gilbert-damping para-
meter and the quantity ϱ stands for an arbitrary parameter

expressed in term of the second-order dimensionless in-
homogeneous exchange parameter within the magnet.

Already at the heart of the information technologies developed
in the second half of the twentieth century, the tailoring of mag-
netic materials [2–4] is arguably undergoing a second revolution
with the development of spintronics [5,6]. Below the Curie tran-
sition temperature, the spin degrees of freedom carried by loca-
lized electrons in ferromagnetic materials tend to spontaneously
long-range order. Micromagnetic description actually consists in
studying the local order parameter – the magnetization averaged
over a few lattice cells.

In solid physics, the understanding of complex magnetic
structures can be achieved by the Heisenberg model of spin–spin
interactions. Such a model has successfully explained the existence
of ferromagnetism below the Curie temperature, and also at-
tracted considerable attention in nonlinear science and condensed
matter physics [7]. The dynamics and kinetics of a ferromagnet is
dictated by the variations in its magnetization. When a ferro-
magnet is used to store information, bits are encoded in the or-
ientation of the local magnetization. Controlling the state of a
ferromagnet crystal unambiguously described by the magnetiza-
tion vector stands to be fundamental in the understanding of the
magnetic storage process of the data elements. Different aspects of
magnetization dynamics are involved in magnetic storage tech-
nologies in extended layers and nanostructures [8–12]. In-
vestigating the magnetic nanoelements is not only in focus in view
of their technological potential but they are often as test systems
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for the analysis of debated microscopic mechanisms involved in
magnetization dynamics such as coupling to spin-currents [13–
15], heat gradients [16] and the role of spin–orbit coupling in
domain wall dynamics [17,18], just to name a few. Dissipation –

relaxation of excited magnetic textures towards an equilibrium
state – is faced usually when magnetic textures are dynamically
manipulated.

Actually, magnetization dissipation, expressed in terms of the
Gilbert-damping parameter, is a key factor determining the per-
formance of magnetic material in a host of applications. As a
matter of fact, we mention the enhancement of the damping of
ferromagnetic materials in contact with nonmagnetic metals
[19,20] in magnetic memory devices based upon ultrathin mag-
netic layer [21,22], which paves the way to tailoring the Gilbert-
parameter for particular materials and applications.

Nonlinear behavior in magnetic systems actually constitutes a
great topic of continuing interest [23–25]. There has been a
number of experiments [26–28] which have shown an interesting
nonlinear mixing of two signals in magnetic materials. The tra-
deoff between the nonlinearity – tendency to increase the wave
slope and the dispersion – tendency to flatten the wave generates
some typical self-confined structures coined as solitons. In ferro-
magnetism, these structures known as magnetic solitons are
sometimes referred to magnons. Owing to attraction, a cluster of
magnons in ferromagnetism tends to be self-localization. In one-
dimensional ferromagnets, the previous attraction becomes cri-
tical due to the fact that it produces a bound state of quasi-parti-
cles. Because of the self-localization of the magnon cluster, a spin
wave which can be regarded as a cluster of microscopic number of
coherent magnons becomes unstable. The topological soliton and
the dynamic soliton [29] are the result of the magnetization lo-
calization induced by the developing instability. The topological
soliton which refers to the magnetic domain wall is regarded as a
potential hill separating two degenerated magnetic states. This
type of soliton actually forms a spatially localized configuration of
magnetization where the magnetic moments inverse gradually.
The second type describes the localized states of magnetization
which is likely to reduce to a uniform magnetization by con-
tinuous deformation where the excited ferromagnet transits to the
ground state. These typical solitons which result from the tradeoff
between the Maxwell equations and the Landau–Lifshitz–Gilbert
equation constitute a family of waves known as autonomous so-
litons which are similar to the classical soliton concept introduced
firstly by Zabusky and Kruskal [30] for autonomous nonlinear and
dispersive dynamic systems [31,32]. They can completely preserve
their localized form and speed during propagation and even after
suffering some complex head-on collision with one another.

Since bits are encoded in the orientation of the local magne-
tization, our main motivation in this work is to better understand
the magnetic information storage and data process elements in

advanced magnetic devices. Thus, our leading objective is to in-
vestigate properly the dynamics of a ferromagnet slab of zero
conductivity where inhomogeneous exchange becomes crucial.
We are then resorted to study properly the governing system
above given by Eq. (1), from the physical viewpoint consisting of
the propagation and nonlinear interactions between the magnetic
polaritons within the slab. Accordingly, we organize our work as
follows. In Section 2, we review in a concise presentation the
physical ground of the system given by Eq. (1). Next, in Section 3,
we study the soliton structure of the previous system while ex-
pressing in detail the two-soliton and the three-soliton solutions
alongside their energy functionals – kinetic, potential, and total
energy densities. Then, in Section 4 we discuss the above results
while computing the shifts of the individual solitons. Finally, we
end the present work with a brief summary.

2. Physical ground: inhomogeneous exchange within ferrites

We consider a quasi one-dimensional ferrite slab lying in the x-
axis, the transverse dimension being negligible. This slab is mag-
netized to saturation by an in-plane external field H0

∞ directed
along the transverse y-axis perpendicular to the propagation x-
direction as presented in Fig. 1. Due to the absence of eddy cur-
rents, electromagnetic waves are likely to propagate. We consider
a thick enough film in view of ensuring a homogeneous magne-
tization over the ferrite. We assume that the crystalline and sur-
face anisotropy of the sample is negligible. The use of Maxwell's
equations combined to the Landau–Lifshitz–Gilbert (LLG) equation
[33,34] for a ferrite yields the following dimensionless system

H H H M , 2at
2−∇·(∇· ) + Δ = ∂ ( + ) ( )

mM M H M M/ , 2bt teff σ∂ = − ∧ + ∧ ∂ ( )

where vectors H and M stand for the dimensionless magnetic in-
duction and magnetization density, respectively. From a practical
viewpoint, the above coupled equations are actually fundamental
for investigation of the data loading processes in reversal magnetic
memory devices in the ferrites. The constants m and s refer to the
dimensionless saturation magnetization and Gilbert-damping
parameter [33,34], respectively.

The expression of the effective field Heff is given by [33,34]

H H n n M M, 3eff β α= − ( · ) + Δ ( )

where α and β are the constants of the inhomogeneous exchange
and the magnet anisotropy, respectively, and n is the unit vector
directed along the anisotropy axis. For a simple tractability, we
assume en z≡ directed along the z-axis.

Fig. 1. Ferrite slab and dispersion relation. In panel (a), vectors V and H0 stand for the velocity of the wave propagation and the in-plane external magnetic field, respectively.
In panel (b), the variations of the wave-frequency ω, the phase velocity V of the plane wave, and the group velocity Vg of the bulk wave are plotted against the wave-number κ
of the wave.
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