
Magnon specific heat and free energy of Heisenberg ferromagnetic
single-walled nanotubes: Green's function approach

Bin-Zhou Mi a,b,n, Liang-Jun Zhai c, Ling-Ling Hua a

a Department of Basic Curriculum, North China Institute of Science and Technology, Beijing 101601, China
b Department of Physics, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
c The School of Mathematics and Physics, Jiangsu University of Technology, Changzhou 213001, China

a r t i c l e i n f o

Article history:
Received 5 August 2015
Received in revised form
26 August 2015
Accepted 7 September 2015
Available online 8 September 2015

Keywords:
Ferromagnetic nanotubes
Magnon specific heat
Free energy
Magnetic correlation effect
Green's functional method

a b s t r a c t

The effect of magnetic spin correlation on the thermodynamic properties of Heisenberg ferromagnetic
single-walled nanotubes are comprehensively investigated by use of the double-time Green's function
method. The influence of temperature, spin quantum number, diameter of the tube, anisotropy strength
and external magnetic field to internal energy, free energy, and magnon specific heat are carefully cal-
culated. Compared to the mean field approximation, the consideration of the magnetic correlation effect
significantly improves the internal energy values at finite temperature, while it does not so near zero
temperature, and this effect is related to the diameter of the tube, anisotropy strength, and spin quantum
number. The magnetic correlation effect lowers the internal energy at finite temperature. As a natural
consequence of the reduction of the internal energy, the specific heat is reduced, and the free energy is
elevated.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, magnetic nanotubes (MNTs) have attracted
great interest in experimental [1–20] and theoretical [18,21–40]
studies due to their fascinating properties originating from low
dimensionality and quantum fluctuations. Of all the physical
properties of MNTs, the thermodynamic and magnetic behavior
plays a crucial role in potential applications, particularly in ultra-
high-density magnetic storage devices, biotechnology, nanomedi-
cine, and nanoelectronic devices, etc. Seen from the perspective of
the theory, the magnetic properties of MNTs can be very easily
described by the well-known Ising model and Heisenberg model
using various theoretical techniques, such as Monte Carlo simu-
lations [31–34], the effective-field theory [35–39], and many-body
Green's function method (MBGFM) of the quantum statistical
theory [40].

The effects of magnetic correlations (MCs) on thermodynamic
properties in ferromagnetic single-walled nanotubes (FM-SWNTs)
with Heisenberg model are to be further investigated within the
MBGFM. The aim of the present paper is to have a satisfactory
investigation of the thermodynamic quantities of FM-SWNTs, in-
cluding internal energy, free energy, and magnon specific heat. To

do so, we follow the routine proposed in Ref. [41], and derive an
expression for computing the internal energy, which contains
transverse magnetic correlation (TMC) and longitudinal magnetic
correlation (LMC), and valid for spin quantum number SZ1. With
this formula, we are able to evaluate the other two thermo-
dynamic quantities and thoroughly analyze the effect of the MCs.
The cases where an external magnetic field is introduced are also
investigated. We find that the MCs play an important role since
they change the internal energy remarkably. The MCs depress the
thermal motion of the system, so that they lower the internal
energy, magnon specific heat, and elevate the free energy.

In Section 2 we present our model and put down the Heisen-
berg exchange Hamiltonian of FM-SWNTs. Then we briefly outline
the formulas derived by the MBGFM. In Section 3, numerical
computation is carried out and the role of temperature, spin
quantum number, diameter of the tube, anisotropy strength and
external magnetic field on thermodynamic quantities are carefully
analyzed. Furthermore, the effects of MCs on internal energy and
other thermodynamic quantities are clearly demonstrated. At last,
Section 4 presents our concluding remarks.

2. Model and formulas

We consider a Heisenberg ferromagnetic single-walled nano-
tubes (HFM-SWNTs) with armchair type [31,40]. In this model, the
spins, localized on the sites of a square lattice wall, were assumed
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to interact via a Heisenberg exchange coupling limited to nearest
neighbor (nn) sites. Moreover, a uniaxial anisotropy was assumed
to favor the nanotube axis, and a magnetic field was applied along
such an easy direction. The Hamiltonian is given as follows:

H J S S D S B S
1
2 1i j i j i i

z
z i i

z
,

2∑ ∑ ∑= − ⋅ − ( ) − ( )[ ]

The first term represents the Heisenberg exchange energy with
exchange parameter J. The subscripts i and j denote the lattice
sites, and [i, j] mean that the nn exchanges are involved. The
second term describes the uniaxial anisotropy. It was indeed
possible for the uniaxial anisotropy to appear in real nanotube
materials [1–3]. Note that z-axis labels the directions of tube axis.
The anisotropy strength of D is usually believed to be less than J by
two orders of magnitude. The last term stands for Zeeman energy
when an external magnetic field Bz is applied along the tube axis.
In this paper, we set Boltzman constant kB¼1. In calculation, we fix
J¼100, and all parameters are taken as dimensionless quantities.
There are N and m sites along the axis and circumference of the
tube, respectively.

The MBGFM is a powerful means [42–48] to calculate magne-
tization and other thermodynamic quantities [49–58] of the Hei-
senberg model since this method takes into account the spin
fluctuation, and is valid in the whole temperature range. In order
to study magnetic and thermodynamic properties of HFM-SWNTs,
we introduce the retarded Green's function
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= −, and u is a parameter. After time Fourier trans-

formation, the retarded Green's function is denoted as
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Rω ω〈〈 〉〉 ( ) = ( )+ , and then we obtain the equation of motion:
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The higher order Green's function appearing in the equation of
motion is decoupled by random phase approximation (RPA). As for
the term concerning single-ion anisotropy term in Eq. (1), we
adopt the Anderson and Callen's decoupling [44,45].

Now the Green's function is further Fourier transformed along
the tube axis with periodic boundary condition. The wave vector
component, denoted as p, is within the first Brillouin zone. As for
circumferential direction, the discrete Fourier transformed is taken
with periodicity condition. The site number m along perimeter
given, the argument after transformation, denoted as q, should
meet following condition:

q
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Then the Fourier transformation of the Green's function is
written as
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The subscripts z and y label the directions of tube axis and
circumference, respectively. The perimeter of the tube is ma, and
the diameter d of the tube is determined by πd¼ma. Hereafter we
also simply refer m as diameter.

The retarded Green's function G p q, ,R ω( ) can be expressed as
follows:
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where the expression of energy spectrum is
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In Eq. (7),
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where S S S 1 .b = ( + ) Note that we use Sz〈 〉 to denote magnetization
and S to denote spin quantum number. Following the Callen's
method proposed in Ref. [46], the magnetization of arbitrary S is
expressed [47,48] as follows,
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Where T1/β = , the inverse of temperature.
The internal energy is a primary quantity of the system, which

is simply the thermodynamic average of the Hamiltonian. Let us
discuss the formula of the internal energy. It contains three terms:
the Heisenberg exchange energy (hereafter called as magnetic
correlation energy), the anisotropy energy, and the Zeeman en-
ergy. Under the mean field approximation (MFA), the Heisenberg
exchange energy in Eq. (1) per lattice site was decoupled [49] as
follows:
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Its essence is to neglect the transverse and longitudinal corre-
lation between site i and its neighbor j. In other words, the MFA
neglects the spin wave excitation. While for the internal energy or
the specific heat, that involve TMC and LMC between spins, one
has to go beyond MFA. In fact, in a pure Heisenberg magnetic
system, the magnetic spin correlation contains two parts: the TMC
and the LMC, and both of them are nonzero at or above the
magnetic phase transition temperature [50,51]. In this sense, the
magnetic spin correlations effect has a considerable contribution
to the thermodynamics properties of HFM-SWNTs.

Magnon specific heat in title means considering the magnon
contribution to specific heat. This paper, being the continuation of
our previous research of the magnetic correlation in ferromagnetic
single-walled nanotubes [52], will be devoted to the evaluation of
the magnetic spin correlations contribution to the specific heat
and free energy.

Several energies are defined as follows: longitudinal correlation
energy LCE E J S SLC Nm i j ij i

z
j
z1

2 ,= − ∑ 〈 〉, transverse correlation energy

TCE E J S STC Nm i j ij i j
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2 ,= − ∑ 〈 〉+ − , magnetic correlation energy MCE

E E EMC TC LC= + , mean field energy MFE E J S0MF
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2
2= − ( )〈 〉 and in-

ternal energy E H
Nm

= 〈 〉 . Please note that they are all the energies per
lattice site. For a precise theoretical treatment we follow the
routine of Ref. [41] where the longitudinal and transverse corre-
lation functions were calculated carefully. The expressions of these
energies as follows:
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