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a b s t r a c t

The effective-field theory (EFT) is used to study the dynamical response of the kinetic spin-3/2 Ising
model in the presence of a sinusoidal oscillating magnetic field. The effective-field dynamic equations are
given for the honeycomb lattices (Z 3= ). The dynamic order parameter, the dynamic quadrupole mo-
ment are calculated. We have found that the behavior of the system strongly depends on the crystal field
interaction D. The dynamic phase boundaries are obtained, and there is no dynamic tricritical point on
the dynamic phase transition line. The results are also compared with previous results which obtained
from the mean-field theory (MFT) and the effective-field theory (EFT) for the square lattices (Z 4= ).
Different dynamic phase transition lines show that the thermal fluctuations are a key factor of the dy-
namic phase transition.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

The spin-3/2 Ising model was first proposed for a qualitative
description of phase transitions observed in the compound DyVO4

[1]. And then the equilibrium properties of the model have been
investigated by a variety of theoretical studies [2–17], such as the
mean-field theory (MFT), the effective-field theory (EFT), the
Monte Carlo (MC) simulations, the cluster variation method and
the renormalization-group techniques.

The equilibrium properties of the spin-3/2 Ising model are well
knownwithin the framework of equilibrium statistical physics, but
the dynamic phase transition properties of nonequilibrium spin-3/
2 Ising model have not been well explored. Grandi et al. discussed
dynamic critical exponents using the Monte Carlo simulations and
short-time dynamic scaling [18]. Keskin and Canko studied the
dynamic behavior of spin-3/2 Ising model through the path
probability method [19,20] and the Onsager theory of irreversible
thermodynamics [21,22]. Keskin et al. investigated the dynamic
phase diagram of spin-3/2 Ising model under an oscillating mag-
netic field by the use of the mean-field theory (MFT) [23–26].
Cengiz et al. studied the ultrasonic attenuation on the Bethe lattice
for a spin-3/2 Ising model using the Onsager theory of irreversible
thermodynamics [27]. Vatansever et al. investigated the relaxation

and complex magnetic susceptibility treatments of a spin-3/2 Ising
model by a method combining the statistical equilibrium theory
and the thermodynamics limit [28].

But all these works were studied in the framework of the MFT,
and the transition is not truly dynamic as it can exist even in the
zero frequency (static) limit of the driving field. This transition in
the static limit is an artifact of the mean-field approximation,
which neglects nontrivial thermal fluctuations. Efforts have been
made to treat the effects of the thermal fluctuations using the EFT
for a spin-3/2 Ising model under an oscillating magnetic field [29].
It shows that the dynamic tricritical behavior and multicritical
points may exist in the certain region of D for the square lattices
(Z 4= ). Now the problem is to find out whether there are the
dynamic tricritical behavior and multicritical points in the spin-3/
2 Ising model for the honeycomb lattices (Z 3= ). We know that
the EFT considers partially the spin–spin correlations and results
in an improvement over the MFT. Decreasing the coordination
number of the Ising model, the more thermal fluctuations are ta-
ken into account in the EFT, and the more accurate results will be
obtained.

Therefore in this work, we use the correlated effective-field
theory, as an analytical method, to study the kinetic spin-3/2 Ising
model on a honeycomb lattice and compare the results with those
of recently published works. The layout of this paper is as follows.
In Section 2, we briefly present the EFT method we used. The re-
sults and discussion are presented in Section 3. In Section 4, we
summarize our conclusions.
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2. Formulation

We consider a kinetic spin-3/2 Ising model with N sites de-
scribed by the Hamiltonian given by
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= ± ± represents the spin variable at site i, Jij re-

presents the spin–spin interaction strength between sites i and j,
the sum iΣ is carried out over all the sites, the sum i j,Σ< > is carried
out over all the distinct nearest-neighbor pairs, D is the crystal
field interaction, and h t( ) is a time-dependent external field given
by h t h tsin0 ω( ) = ( ). The system is in contact with an isothermal
heat bath at temperature T . For simplicity all Jij are taken equal to
a constant J 0> .

The system evolves according to the Glauber stochastic process
[30] at a rate of 1/τ transitions per unit time. From the master
equation associated to the stochastic process, it follows that the
average magnetization satisfies the following equation
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where k T1/ Bβ = and a J s h tj j= ∑ + ( ), kB is the Boltzmann con-
stant and 1τ = .

According to the effective-field theory with correlations, as was
initiated by Honmura and Kaneyoshi [31], it is convenient to in-
troduce the differential operator technique into the expression.
And then for spin-3/2 we introduce the generalized but approxi-
mated Van der Waerden identity [32], we obtain
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where x/∇ = ∂ ∂ is a differential operator, m si= represents the

average magnetization, q si
2 2η= = represents the quadrupole

moment. Z is the coordination number. The two functions f x h( + )
and g x h( + ) are expressed as
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For the honeycomb lattices Z 3= , the set of the dynamic
equations are given as

dm
dt
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The coefficients A i 0 3i ( = − ) and B i 0 3i ( = − ) can be easily
calculated employing a mathematical relation a f xexp( ∇) ( )=
f x a( + ) . And the temperature T , the longitudinal field h and the
crystal field interaction D are measured in units of ZJ . The fre-
quency of the longitudinal field is 2ω π= . Eqs. (7) can be solved
using the fourth-order Runge–Kutta method.

The dynamic order parameter M and the dynamic quadrupole
moment Q are defined as

M m t dt Q q t dt
2
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2
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the two types of solutions can be identified: a symmetric one
where m t( ) follows the field oscillating around zero giving M 0= ,
and an antisymmetric one where m t( ) does not follow the field
and oscillates around a finite value different from zero, such that
M 0≠ ; if it oscillates around 3/2±( ), this antisymmetric solution
corresponds to the ferromagnetic 3/2−( ) phase (F3/2 phase); if it
oscillates around 1/2±( ), this antisymmetric solution corresponds
to the ferromagnetic 1/2−( ) phase (F1/2 phase).

3. Results and discussion

By solving the effective-field Eqs. (7), the m t t( ) − and q t t( ) −
curves are obtained. Then the dynamic order parameter M and the
dynamic quadrupole moment Q can be calculated using the above
definitions. The temperature variations of M and Q are shown in
Fig. 1. The dynamic transition point is identified as the tempera-
ture at which the dynamic order parameter M vanishes. If the
dynamic order parameter M decreases to zero continuously as the
temperature increases, the system undergoes the second-order
phase transition; if the dynamic order parameter M jumps to zero
discontinuously as the temperature increases, the system under-
goes the first-order phase transition. Fig. 1(a) shows that the sys-
tem exhibits a second-order phase transition from the F3/2 phase
to the P phase for D 0.25= − and h 0.50 = . The dynamic phase
transition temperature T ZJ/ 0.705c = can be compared with the
MFT result T ZJ/ 0.915c = in Ref. [23]. Fig. 1(b) and (c) illustrates the
thermal variations of M and Q for D 0.475= − and h 0.1250 = for
two different initial values. From Fig. 1(b) we can see that the
system shows the first-order phase transition from the F1/2 phase
to the F3/2 phase for the dynamic phase transition temperature
T ZJ/ 0.15t = and then shows the second-order phase transition
from the F3/2 phase to the P phase for the dynamic phase transi-
tion temperature T ZJ/ 0.5205c = . The results can be compared with
the MFT results T ZJ/ 0.2t = and T ZJ/ 0.5575c = in Ref. [23]. Fig. 1
(d) and (e) illustrates the thermal variations of M and Q for
D 0.5= − and h 0.250 = for two different initial values. In Fig. 1
(d) the system shows the first-order phase transition from the F3/2

phase to the F1/2 phase at T ZJ/ 0.21t = and then shows the second-
order transition from the F1/2 phase to the P phase at T ZJ/ 0.305c = .
The results can be compared with the MFT results T ZJ/ 0.2t = and
T ZJ/ 0.38c = in Ref. [23]. Fig. 1(f) and (g) illustrates the thermal
variations of M and Q for D 0.625= − and h 0.10 = for two different
initial values. From Fig. 1(f) the system shows the first-order phase
transition from the F3/2 phase to the F1/2 phase at T ZJ/ 0.057t = and
then shows the second-order phase transition from the F1/2 phase
to the P phase at T ZJ/ 0.179c = . In contrast, the system exhibited
three successive phase transitions for D 0.625= − and h 0.10 =
using the EFT for the square lattices of Ref. [29], and the dynamic
phase transition temperatures were T ZJ/ 0.095t = , T ZJ/ 1.095c1 = ,
and T ZJ/ 1.125c2 = , respectively. Fig. 1(h) shows that the system
undergoes a second-order phase transition from the F1/2 phase to
the P phase for D 0.85= − and h 0.10 = . The dynamic phase tran-
sition temperature is T ZJ/ 0.173c = .

Comparing with previous results obtained by the MFT of Ref.
[23] and the EFT of Ref. [29], the critical temperatures of the MFT
are higher than the ones given by the EFT except for the first-order
transition point at D 0.5= − and h 0.250 = . Partially thermal fluc-
tuations are considered in the EFT but lacking all of thermal
fluctuations in the MFT, and these results given above indicate that
the thermal fluctuations play an essential role in the dynamic
phase transition. Some of interesting behaviors found by the
mean-field approximation may disappear if the thermal
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