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a b s t r a c t

This paper considers the radial dependence of magnetic diffusion in cylindrical magnetoelastic materials
that results from the simultaneous application of a constant surface magnetic field and a dynamic me-
chanical input. Mechanically induced magnetic diffusion is particularly pronounced in materials that
exhibit a strong magnetoelastic coupling, such as magnetostrictive materials and ferromagnetic shape
memory alloys. Analytical time- and frequency-domain solutions of the PDE governing the radial dif-
fusion of magnetic field are derived. The solutions are non-dimensionalized by deriving a skin depth and
cut-off frequency for mechanically induced diffusion, which are about 2.08 and 4.34 times those for field-
induced diffusion, respectively. It is shown that the effects of mechanically induced diffusion can be
incorporated in linear constitutive models through the use of a complex-valued, frequency-dependent
magnetoelastic coupling coefficient and Young's modulus. The solutions show that for forcing fre-
quencies f up to about the cut-off frequency, the magnitude of the steady-state, dynamic field increases
in proportion to f. As forcing frequency increases above that range, the magnitude overshoots its high
frequency limit, peaks, then decreases to its high frequency limit, at which point the dynamic magnetic
flux becomes zero and continued increases in forcing frequency have no effect. Together, the derived
frequency responses, skin depth, and cut-off frequency can be used to design magnetoelastic systems and
determine if lamination of the magnetoelastic material is necessary

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Eddy currents inside electrically conducting media alter the
propagation of magnetic fields into the media; the resulting at-
tenuation and phase lag of the magnetic fields is quantified by
magnetic diffusion laws. Magnetic diffusion in ferromagnets
caused by the application of dynamic magnetic fields is a classical
problem that has received significant attention since the late
1800s [1–3]. The influence of magnetoelasticity and static stress on
field-induced magnetic diffusion has been investigated only more
recently [4–6].

Dynamic mechanical inputs cause a diffusion of static magnetic
fields into electrically conducting magnetoelastic materials, parti-
cularly ones that exhibit strong coupling, such as magnetostrictive
materials and ferromagnetic shape memory alloys. Mechanically
induced magnetic diffusion is critically important for applications
in which these materials operate under dynamic mechanical
loading, including dynamic sensors, energy harvesters, vibration
dampers, and stiffness tuning devices. However, only a few studies

on this effect have been reported.
The effects of 1D mechanically induced magnetic diffusion have

been briefly studied numerically [7–9]. Sarawate and Dapino [7]
investigated the magnetic field in a Ni–Mn–Ga rod and illustrated
the dependence of the field's time-domain response on the radial
coordinate and strain frequency for a small range of parameters.
1D mechanically induced magnetic diffusion has been analytically
treated in the context of magnetostrictive energy harvesters by
Davino et al. [10], who derived an expression for average harvested
power, and by Zhao and Lord [11], who derived an expression for
the effective internal magnetic field. However, the spatial and
frequency dependence of the internal magnetic field or magnetic
flux density have not been derived. Further, calculation of a skin
depth and cut-off frequency for this effect are absent from the
literature.

This paper presents an analytical model of linear, 1D me-
chanically induced magnetic diffusion in cylindrical magnetoe-
lastic materials. The model is used to quantify the radial depen-
dence of internal magnetic fields created by eddy currents that
result from the application of harmonic, axial stresses. Analytical
time- and frequency-domain solutions are derived for a constant,
axial surface magnetic field after considering the axial symmetry
and assuming (i) negligible displacement currents, (ii) linear
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constitutive behavior, (iii) negligible demagnetizing fields, and (iv)
uniform stress and electrical conductivity . The solutions are non-
dimensionalized and then used to investigate the spatial and fre-
quency dependence of the internal magnetic field and magnetic
flux. Unlike the referenced analytical and numerical solutions,
these analytical solutions provide design criteria, reveal the re-
lative importance of each material property, and provide expres-
sions for skin depth and cut-off frequency. For nonlinear operating
regimes, the derived solutions can be used to assess whether la-
mination of the magnetoelastic material is necessary.

2. Model development

The general magnetic diffusion equation for magnetoelastic
materials is derived from Maxwell's equations and the assumption
that displacement currents are negligible
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where μ[ ] and d[ ]⁎ denote the magnetic field- and stress-dependent
magnetic permeability and piezomagnetic coefficient tensors, re-

spectively. In ferromagnetic shape memory alloys, M
→
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the strain vector S
→

such that (1) becomes
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where [e] represents the magnetic field- and strain-dependent
coupling coefficient tensor.

For biased operation and sufficiently low amplitude excitation,
the constitutive tensors μ[ ], d[ ]⁎ , and [e] can be assumed to be
constant. If a cylindrical magnetostrictive material or ferromag-
netic shape memory alloy is operated in a transducer having a
closed magnetic circuit of low reluctance, demagnetizing fields can
be neglected and the circuit can be represented as an infinitely
long rod subjected to a uniform, axial magnetic field Hext at its
surface and an axial, distributed force on its ends. Due to the in-
homogeneous internal magnetic field, the rod's stiffness, and
therefore the applied stress, will be radially dependent [4]. How-
ever, to permit an analytical solution, the stress is assumed to be
uniform throughout the rod. Stress uniformity along the axial di-
rection is valid for forcing frequencies sufficiently below me-
chanical resonance of the rod. Due to this assumption, the rod's
mechanical inertia and damping (i.e., structural dynamics) are
ignored.

Under the aforementioned assumptions, (2) and (3) simplify to
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respectively, where r is the radial coordinate, the subscript r de-
notes partial differentiation with respect to r, and μ, dn, and e are
the 33 components of the respective tensors. Thus, the 1D

magnetic diffusion problem for ferromagnetic shape memory al-
loys is identical to that for magnetostrictive materials if e0μ and S
(t) are substituted for dn and T(t), respectively. Consequently, it is
sufficient to only solve (4), which resembles the 1D field-induced
magnetic diffusion problem, but with a forcing term. Fig. 1 depicts
the general mechanically induced magnetic diffusion problem for
axial loading of a magnetoelastic cylinder and the simplified pro-
blem that is solved.

3. 1D time- and frequency-domain solutions

To solve (4), it is convenient to have zero boundary conditions.
This is accomplished using the change of variables
H r t H r t H, , ext
˜ ( ) = ( ) − , so that the initial boundary value problem
is written as
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where r¼R is the surface of the rod. Eqs. (6)–(9) can be written as
an inhomogeneous Bessel equation of order zero using the change
of variables, u rμσ= ,
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Fig. 1. General mechanically induced magnetic diffusion problem for axial loading
(left) and the simplified 1D problem that is solved (right); the magnetic field at the
surface of the rod, Hext, is assumed to be uniform and constant in time.
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