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a b s t r a c t

We apply the coupled cluster method to high orders of approximation and exact diagonalizations to
study the ground-state properties of the triangular-lattice spin-s Heisenberg antiferromagnet. We cal-
culate the fundamental ground-state quantities, namely, the energy e0, the sublattice magnetization Msub,
the in-plane spin stiffness ρs and the in-plane magnetic susceptibility χ for spin quantum numbers
s s1/2, 1, , max= … , where s 9/2max = for e0 and Msub, s 4max = for ρs and s 3max = for χ. We use the data for
s 3/2≥ to estimate the leading quantum corrections to the classical values of e0, Msub, ρs, and χ. In
addition, we study the magnetization process, the width of the 1/3 plateau as well as the sublattice
magnetizations in the plateau state as a function of the spin quantum number s.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

In the 1970s Anderson and Fazekas [1,2] first considered the
quantum spin-1/2 Heisenberg antiferromagnet (HAFM) for the
geometrically frustrated triangular lattice and they proposed a li-
quid-like ground state (GS) without magnetic long-range order
(LRO). Later on it was found that the spin-1/2 HAFM on the tri-
angular lattice possesses semi-classical three-sublattice Néel or-
der, see, e.g., Refs. [3–19]. However, the sublattice magnetization
Msub is drastically diminished in the s 1/2= model [11,14–18]
because of the interplay between quantum fluctuations and strong
frustration. The small magnetic order parameter indicates that the
semi-classical magnetic LRO is fragile and that small additional
terms in the Hamiltonian may destroy the magnetic LRO, see, e.g.,
Refs. [20–28].

Although very precise data for the relevant GS quantities are
available for unfrustrated HAFM's on bipartite two-dimensional
lattices, see, e.g., Refs. [29–32] related to the square lattice, the
corresponding data for the triangular lattice are less precise. This
lack of precision is related to the strong frustration in the system
that, e.g., does not allow one to apply the quantum Monte Carlo
method. Moreover, the spin-wave approach is less efficient for
frustrated lattices than it is for non-frustrated lattices. Never-
theless, spin-wave theories are considered as appropriate, in par-
ticular, if the spin quantum number s is not s 1/2= or s¼1.

Perhaps the most accurate result for the GS order parameter (i.e.,
the sublattice magnetization Msub) for s 1/2= has been obtained
by a recent density matrix renormalization group study [16],
where a result of M 0.205sub = has been found.

The continuous interest in the triangular-lattice HAFM is (last
but not least) also related to a fluctuation-induced magnetization
plateau at 1/3 of the saturation magnetization [33–53]. In parti-
cular, two model compounds, namely Ba3CoSb2O9 with s 1/2=
and Ba3NiSb2O9 with s¼1, have been shown very recently to de-
monstrate an excellent agreement between the experimentally
measured magnetization curves and those curves from theoretical
predictions, see Refs. [39,45,46] for s 1/2= and Refs. [44,48] for
s¼1.

In the present paper we consider the Hamiltonian

H h ss s ,
1ij

i j
i

i
z∑ ∑= −

( )〈 〉

where the sum runs over nearest-neighbor bonds ij〈 〉 on the tri-
angular lattice, s ss 1i

2( ) = ( + ), and h is an external magnetic field.
We consider arbitrary spin quantum number s. We use the cou-
pled cluster method (CCM) to high orders of approximation to
determine the GS properties in zero magnetic field, i.e., the GS
energy per spin e0, the sublattice magnetization Msub (order
parameter), the spin stiffness ρs, and the uniform susceptibility χ.
These quantities constitute the fundamental parameters de-
termining the low-energy physics of the triangular Heisenberg
antiferromagnet. Moreover, the stiffness and the susceptibility are
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used as input parameters in scaling functions for various ob-
servables [54].

In addition to the zero-field quantities we also consider the
magnetization process M(h) and determine the 1/3 plateau in the
M(h)-curve. We complement the CCM calculations by carrying out
Lanczos exact diagonalization of finite lattices.

2. Methods

2.1. Lanczos exact diagonalization

The Lanczos exact diagonalization (ED) is one of the most
useful methods that can be used to investigate frustrated quantum
spin systems, see, e.g., Refs. [55–62]. Although lattices of size
N¼36 are common for ED calculations for spin s 1/2= , the system
size N accessible for ED shrinks significantly, see, e.g., Refs.
[48,57,60,63–65]. Hence, we use the ED here in order to comple-
ment the results of the CCM (that yields results in the limit
N → ∞). We use Schulenburg's spinpack code [66] to calculate the
magnetization curves for s 1/2, 1, , 5/2= … . The maximum lattice
size for s¼2 and 5/2 is N¼12, whereas for s 3/2= we have results
for N 12, 18, 21= . For s¼1 the largest lattice we can consider is
N¼27. We use these data to analyze the s-dependence of the 1/3
plateau.

2.2. Coupled cluster method

The coupled cluster method (CCM) is a universal many-body
method widely used in various fields of quantum many-body
physics, see, e.g., Refs. [67,68]. Meanwhile, the CCM has been es-
tablished as an effective tool in the theory of frustrated quantum
spin systems, see, e.g., the recent papers [14,27,39,48,69–80]. Here
we illustrate only some features of the CCM relevant for the pre-
sent paper. For more general information on the methodology of
the CCM, see, e.g., Refs. [68,81–85].

The CCM calculation starts with the choice of a normalized
reference state Φ| 〉. We choose the classical GS of the model as
reference state, which is well known for the triangular HAFM for
arbitrary fields, see, e.g., Refs. [35,39,40] and Fig. 1. For zero field it
is the three-sublattice Néel state, i.e., state I with α¼60° in Fig. 1.
For finite magnetic fields non-collinear planar states with field
dependent pitch angles α and β are classical GS's, see Fig. 1. The
reference state is a collinear state (so-called up–up–down state,
see state II in Fig. 1) only at the 1/3 plateau. With respect to the
corresponding reference state, we then define a set of mutually
commuting multispin creation operators CI

+, which are themselves
defined over a complete set of many-body configurations I. We
perform a rotation of the local axis of the spins such that all spins
in the reference state align along the negative z-axis. The specific
form of the spin-operator transformation depends on the pitch
angles of the reference state. In this new set of local spin co-
ordinates the reference state and the corresponding multispin
creation operators CI

+ are given by

C s s s s s s; , , , , 2I n n m n m kΦ| 〉 = | ↓ ↓ ↓ ⋯〉 = ^ ^ ^ ^ ^ ^ … ( )+ + + + + + +

where the indices n m k, , , … denote arbitrary lattice sites. In the
rotated coordinate frame the Hamiltonian becomes dependent on
the pitch angles. With the set C, IΦ{| 〉 }+ the CCM parametrization of
the exact ket and bra GS eigenvectors Ψ| 〉 and Ψ〈 ˜ | of the many-body
system is given by
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where C CI I= ( )− + †. The CCM correlation operators, S and S̃, contain
the correlation coefficients, aI and aI˜ , which can be determined by
the CCM ket-state and bra-state equations

C e He I0; 0 5I
S SΦ Φ〈 | | 〉 = ∀ ≠ ( )− −

Se H C e I, 0; 0. 6S
I

SΦ Φ〈 | ˜ [ ] | 〉 = ∀ ≠ ( )− +

Note that each ket-state equation belongs to a specific creation
operator C s s s s s s, , ,I n n m n m k= …+ + + + + + + , i.e., it corresponds to a specific
set (configuration) of lattice sites n m k, , , …. By using the Schrö-
dinger equation, H EΨ Ψ| 〉 = | 〉, we can write the GS energy as
E e HeS SΦ Φ= 〈 | | 〉− . The sublattice magnetization is given by

M N s1/ i
N

i
z

sub Ψ Ψ= − ( ) ∑ 〈 ˜ | | 〉, where si
z is expressed in the trans-

formed coordinate system. The total magnetization M aligned in
the direction of the applied magnetic field h in terms of the global
axes prior to rotation of the local spin axes is given by
M M M M /3A B C= ( + + ) , where MA, MB, and MC are the magnetiza-
tions of the three individual sublattices, cf. Fig. 1, given by

M
N

s
1

,
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where the index iA runs over all NA sites on sublattice A, the index
iB runs over all NB sites on sublattice B, and the index iC runs over
all NC sites on sublattice C, and N N N NA B C= + + . The CCM results
for the ground state energy and the total magnetization as a
function of the magnetic field can be used to calculate the uniform
magnetic susceptibility, given by

dM
dh N

d E
dh

1
. 8

2

2
χ ≡ = − ( )

Note that we consider here χ as susceptibility per site [86].
The GS energy depends (in a certain CCM approximation, see

below) on the pitch angles. In the quantum model the pitch angles
may be different from the corresponding classical values. There-
fore, we do not choose the classical result for the pitch angles in
the quantum model. Indeed, we consider them as a free parameter
in the CCM calculation, which has to be determined by mini-
mization of the CCM GS energy with respect to the pitch angles.
An exception is the zero-field case, where the pitch angle is fixed
to α¼60° (the three-sublattice Néel state).

The spin stiffness ρs measures the increase of energy rotating
the order parameter of a magnetically long-range ordered system
along a given direction by a small twist (pitch) angle θ per unit
length, i.e.,

E
N

E
N

0 1
2

, 9s
2 4θ θ ρ θ θ( ) = ( = ) + + ( ) ( )

where E θ( ) is the ground-state energy as a function of the twist
angle. For the triangular lattice the twist is imposed along a lattice
basis vector and it is within the plane defined by the order para-
meter, see Refs. [8,10], where the twist along both directions leads
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Fig. 1. Reference states used for the CCM calculations.
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