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a b s t r a c t

The study of singularities in the magnetization curve of magnetic materials is since a long time a well
known tool to gain insight into the material properties. Such singularities are usually due to dis-
continuous magnetization processes related to magnetic anisotropy, therefore an ideal investigation
scheme would comprise magnetization measurements along the symmetry axis of a single crystal. As a
matter of fact, one has to often deal with polycrystalline samples: in that case, however, the singularities
can still be detected at the same positions as for the single crystal case. In this paper we focus on fer-
rimagnetic materials with uniaxial magnetic anisotropy. After recalling how theory allows us to calculate
the critical fields at which singularities occur when the magnetic field is applied along a symmetry
direction, we show that a new type of singular point not yet reported in the literature can exist. Such new
singularity appears only in polycrystalline samples. We derive its analytical expression and we also show
that, in spite of the need to overcome the exchange interaction, combinations of the material parameters
can occur for which it falls inside experimentally accessible region.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

The magnetization curve of a magnetic material can show, in
particular cases, points of discontinuity that are called singular
points, or singularities, at determinate values of the applied mag-
netic field H that depend on the material and on the direction of H
with respect to measured sample orientation. Such singularities
can be either of first order, in the case of abrupt magnetization
discontinuities, or of higher order, when the discontinuity be-
comes evident in the magnetization derivatives with respect to H,
and are a very powerful tool to gain insight into the material
properties. Well known examples of first order singularities are
the First Order Magnetization Processes (FOMP) [1], arising from
the occurrence of irreversible rotations of the magnetization vec-
tor between equivalent energy minima, that can be considered as
field induced spin reorientation transitions (SRT). In those ferri-
magnets where magnetic anisotropy and exchange are compar-
able, such as RE-intermetallic compounds, FOMPs are originated

by their mutual competition. In other materials, such as transition
metal oxides, the exchange interaction is so strong that they can
be considered as rigidly collinear ferrimagnets and can be treated
as effective ferromagnets: in this case the energy profile shape is
due to magnetic anisotropy only and it turns out that high order
terms of magnetic anisotropy are required in the energy expres-
sion to induce a FOMP. In addition to FOMPs, higher order singu-
larities can be observed as well at particular orientations of the
magnetic field with respect to the crystal axes [2].

The observation of singular points is a powerful tool to gain
insight into material properties [3–9], widely employed since sev-
eral decades and of topical interest thanks to the more and more
increasing value of the maximum available magnetic field that has
recently reached the value of 90 T [10]. Unfortunately, while single
crystals are often hardly available in ordinary laboratory practice,
singular points in polycrystalline samples are usually hidden by the
average over the different grain orientations. Nonetheless one can
still extract physical parameters from M(H) by means of two special
methods: the Singular Point Detection (SPD) [11] and the Free
Powder Technique (FPT) [12–15]. In FPT the material is grinded into
very fine grains that are completely free to rotate, so that they
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orient themselves with their magnetization vector along the ap-
plied magnetic field H : this technique has proven particularly useful
in the exchange coupling determination for 3d RE-TM intermetallics
[14–18]. On the other hand, in SPD one measures M(H) for a
clamped polycrystalline sample and analyses the derivatives with
respect to H: in this way, starting from a certain derivation order
which depends on the crystal symmetry, one recovers the singu-
larities otherwise hidden inM(H). This a very effective and often the
only method to measure singular points when single crystals are
not available.

Usually, when dealing with single crystals, one detects singula-
rities measuring along the crystal symmetry axes, whilst when
dealing with polycrystals, one can however find again the same
singularities by means of the SPD technique. In this paper we de-
scribe a new type of singular point, not yet reported in the litera-
ture, that adds to the other already known M(H) singularities and
has the characteristic to appear only in polycrystalline samples.

2. Theory

The magnetization curve M(H) of a crystalline magnetic mate-
rial is given, at a microscopic level, by essentially two factors
acting on each single magnetic ion: the exchange interaction with
neighbouring ions and the magnetocrystalline field. However, for
most practical uses it is more convenient to describe the system in
terms of macroscopic parameters associated with one, two, or
more magnetic sublattices, each one formed by rigidly collinear
spins below its own critical temperature. This can be done in the
frame of an extended Stoner–Wohlfarth model [19] by restricting
the analysis at temperature T¼0 K and minimizing the system free
energy written as the sum of Zeeman, magnetocrystalline and
exchange energies:

E E E E . (1)Z K J= + +

When only two sublattices with uniaxial magnetic anisotropy are
involved, Eq. (1) can be written as
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where MA and MB are the sublattice magnetization vectors,
θA, θB and α are the angles between the applied magnetic field H
and MA , MB and the magnetic anisotropy axis respectively, as
shown in Fig. 1, KA

i and KB
i are the sublattices anisotropy constants,

and J is the exchange constant (negative for ferrimagnetic or
antiferromagnetic interaction). We can assume M MA B> without
loss of generality, where MA and MB are the moduli of MA and MB
respectively. The anisotropy axis can be either an easy or a hard
magnetization axis, depending on the algebraic signs of the
anisotropy constants, however the results for the case of hard axis
(viz. easy magnetization plane) can be obtained from the easy axis
results by means of the K R⇔ transformation [1]. The case of
K 0A

i = , pertinent to 3d RE-TM intermetallics where RE has negli-
gible anisotropy compared to TM, has been exhaustively carried
out by Kuz'min [22] considering KB

i up to 4th order (i 2≤ ). On the
contrary, here we take into account the anisotropy of both
sublattices, and arrest the anisotropy contribution EK to the second
order terms. In this case we can drop the i superscripts and the
K R⇔ transformation simply prescribes that substituting K K( , )A B

with K K( , )A B− − into the results of the easy axis case for a given
α value, one obtains the results of the easy plane case for angle

/2π α− between H and the hard magnetization axis. We also
assume that both sublattices have the same anisotropy axis, while
we do not make any assumption regarding the algebraic signs of
anisotropy constants, which can independently be either positive
or negative.

The relationship between the macroscopic parameters ap-
pearing in Eq. (2) and microscopic physical quantities can be de-
rived by the methods of mean field theory in a rather straight-
forward way, as shown in various textbooks and literature
[14,20,21]. The issue of how to obtain the values of anisotropy and
exchange constants from a magnetization curve is therefore of
primary importance in magnetic materials science, for both the-
oretical and practical reasons. One way to gain informations about
K K,A B and J is through the observation of singularities in the M(H)
curve that can occur at particular values of the applied magnetic
field H which depend on K K J, ,A B and α.

Such singularities can be well understood in the frame of the
model described by Eq. (2). The possible system states can be
classified into canted and collinear types, according to the mutual
orientation of the MA and MB vectors. Among the collinear states,
fall the two states having MA and MB along the same direction of
H , namely the forced ferromagnetic or Parallel Saturation (PS) and
the ferrimagnetic or Antiparallel Saturation (AS), with parallel and
antiparallel MA and MB respectively.

In general, when H is along a high-symmetry crystallographic
direction, starting from H¼0 one can have three singular points,
either of first or higher order, corresponding to transitions from
canted to AS, from AS to canted and from canted to PS states, at
three critical fields Ht1, Ht2 and Ht3 respectively. Sometimes, de-
pending on the material parameters and on the crystal orientation
α, Ht1 and/or Ht2 may be missing: an example is displayed in Fig.
7a and d, where it can be noticed that Ht1 does not appear when H
is along the easy magnetization direction. A compact expression
for such critical fields is obtained, when the singularity is of order
higher than first, in Ref. [23] considering small deviations from the
collinear state:

( )K M H K M H JM M(2 ) (2 ) 0 (3)A A t B B t A B
1 1 1+ + + + =− − −

For H along the anisotropy axis, Ht3 is given by Eq. (3) as is, while
Ht1 and Ht2 can be obtained after substituting MB with MB− . For H
perpendicular to the anisotropy axis, Ht1, Ht2 and Ht3 are calculated
in the same way after substituting K K( , )A B with K K( , )A B− − , in
agreement with the K R⇔ transformation. Of special interest is
the critical field Ht3 corresponding to transition to the PS state
perpendicular to the anisotropy axis: in that case Ht3 can be
identified as an effective anisotropy field HS and is given by [24]

Fig. 1. Vector and angle definitions. The anisotropy axis can be either an easy or a
hard magnetization axis.
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