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a b s t r a c t

The magnetic correlations, including transverse magnetic correlation (TMC) and longitudinal magnetic
correlation (LMC), of ferromagnetic single-walled nanotubes are comprehensively investigated by use of
the double-time Green's function method. The influence of temperature, spin quantum number, dia-
meter of the tube, anisotropy strength and external magnetic field to magnetic correlations are carefully
calculated. An interesting result is that for the two smallest spin quantum numbers S¼1, and 3/2, the
LMC around the Curie point is negative, demonstrating that the neighboring spins in ferromagnetic
single-walled nanotubes are antiparallel to each other along the tube axis direction in spite of the fer-
romagnetic exchanges between them, while it is not so along the transverse direction. This is due to the
fact that the quantum spin fluctuation is believed anisotropic. The effect of the LMC is always in contrary
to that of the TMC effect: if one is stronger, the other is weaker.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Since the discovery of carbon nanotubes (CNTs) [1], tubular struc-
tures have been widely investigated because of their fascinating
structure and unique properties. Following the discovery, different
chemical compositions of the nanotubes have been successfully syn-
thesized by various methods [2–9]. More recently, the enthusiasm of
studying magnetic nanotubes (MNTs) has been rising from both ex-
perimental [10–26] and theoretical [27–46] standpoints due to their
promising applications, such as ultrahigh-density magnetic storage
devices, biomagnetic sensors, nanomedicine, molecular devices, cata-
lysts, and nanoelectronic devices, etc. Research on MNTs is expanding
into newer and broader fields, including both physical properties and
possible unique applications in various areas.

There have been several theoretical methods for the magnetic
and thermodynamic properties of MNTs, such as micromagnetic
simulation [27–32], continuum theory of ferromagnetism [33–36],
Monte Carlo simulations [37–40], ab initio density functional
theory calculations [41], effective-field theory [42–45], and many-
body Green's function method (MBGFM) of quantum statistical
theory [46]. As far as we know, the magnetic correlation (MC)
effect of ferromagnetic single-walled nanotubes (FM-SWNTs) has
not yet been satisfactorily investigated. This paper is devoted to
this point.

In Section 2 we present our model and put down the

Heisenberg exchange Hamiltonian of FM-SWNTs. Then we briefly
outline the formulas derived by the MBGFM. In Section 3, nu-
merical computation is carried out and the role of temperature,
spin quantum number, diameter of the tube, anisotropy strength
and external magnetic field on MC are carefully analyzed. At last,
Section 4 presents our concluding remarks.

2. Model and formulas

We have a two-dimensional (2D) square lattice with the nearest
neighbor distance being a and a spin situated in each lattice site. In
Fig. 1 one unit cell is depicted. Then the plane is rolled up along one of
the coordinate axes, sayw1 direction in Fig. 1, to form a nanotube with
a diameter d. This kind of rolling is just what was named as armchair
type tube [27,46]. Zigzag type tube is similarly formed by rolling along
the diagonal direction of a cell, i. e., w2 direction in Fig. 1. Theoretical
study showed that the magnetic properties of FM-SWNTs under fixed
diameter are independent of rolling helicity [46]. Therefore, we only
study the case of armchair type tubes.

The Hamiltonian is given as

H J D S B S
1
2

S S ( ) . (1)i j i j i i
z

z i i
z
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2∑ ∑ ∑= − ⋅ − −

The first term represents the Heisenberg exchange energy with
exchange parameter J. The subscripts i and j denote the lattice
sites, and [i, j] mean that the nearest neighbour (nn) exchanges are
involved. The second term describes the uniaxial anisotropy. Note
that z-axis labels the directions of tube axis. The anisotropy
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strength of D is usually believed to be less than J by two orders of
magnitude. The last term stands for Zeeman energy when an ex-
ternal magnetic field Bz is applied along the tube axis. In this pa-
per, we set Boltzman constant kB¼1. In calculation, we fix J¼100,
and all parameters are taken as dimensionless quantities. There
are N and m sites along the axis and circumference of the tube,
respectively.

In a pure Heisenberg magnetic system, the MC contains two parts:
transverse magnetic correlation (TMC) and longitudinal magnetic
correlation (LMC). They are defined as C S ST i j i j[ , ]= ∑ 〈 〉+ − and

C S SL i j i
z

j
z

[ , ]= ∑ 〈 〉 [48,49], respectively. The TMC is easily calculated by

means of the well-known spectral theorem [50–52]. The LMC, how-
ever, is not easy to evaluate precisely. Some further approximations are
resorted. Under the mean field approximation (MFA), the LMC was
decoupled by [53] C S SL i j i

z
j
z

[ , ]= ∑ 〈 〉〈 〉 which became zero when

temperature is at or above the magnetic phase transition temperature
(TM). Recently, a more satisfactory expression of the LMC beyond the
MFA decoupling was obtained [47], and it was found that LMC in some
three dimensional magnetic systems (bcc and fcc lattice) was nonzero
at TM. This formulism was successfully applied in Ref. [54]. Following
the routine proposed in Ref. [47], we can realize the better physical
picture of the MC in the FM-SWNTs.

As long as the internal energy of a system is known, it is easy to
calculate other thermodynamic quantities such as free
energy, specific heat, entropy and so on. Three energies are
defined as follows: longitudinal correlation energy
LCEE J S SLC Nm i j i

z
j
z1

2 [ , ]= − ∑ 〈 〉, transverse correlation energy TCE

E J S STC Nm i j i j
1

2 [ , ]= − ∑ 〈 〉+ − and internal energy E H
Nm

= 〈 〉 . Please note

that they are all the energies per lattice site.
The MBGFM is employed following the standard routine [46–

52,55–57]. Here we briefly outline the formulas without present-
ing the detailed derivation. The well-known spectral theorem and
its derivative with respect to time t help us to calculate various
thermodynamic quantities. The TMC and LMC are expressed as
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and S S S( 1).b = + Here, we use Sz〈 〉 to denote magnetization and S
to denote spin quantum number. aΦ , and bΦ are expressed as
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where T1/β = , the inverse of temperature. In Eqs. (5) and (6),
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The correlation functions S S( ) , ( )z z2 3⟨ ⟩ ⟨ ⟩ and S( )z 4〈 〉 and the
coefficient C were expressed in Ref. [47]. The perimeter of the tube
is ma, and the diameter d of the tube is determined by πd¼ma.
Hereafter we simply refer m as the diameter. The quantity p is the
wave vector along the z direction and takes the values within the
first Brillouin zone. The value of q is determined by
q n m, ( 0, 1, 2, ... , 1).n

ma
2= = −π Eqs. (2)–(10) are the transcen-

dental equations of TMC and LMC. From these equations, they can
be calculated as a function of spin quantum number S, tempera-
ture T, diameter of the tube m, anisotropy strength D and external
magnetic field Bz.

Under the MFA, the LMC was decoupled for the present lattice
as follows:

C S4 . (11)L
z 2= 〈 〉

As the diameter of the tube m goes to infinite, a single-walled
nanotube approaches a 2D monolayer. For the sake of comparison,
we also calculate the MC of the 2D monolayer. For S¼1/2, the
anisotropy term in Eq. (1) does not play a role. Therefore, in the
present paper, we study the cases of S¼1, 3/2, 2, 5/2, 3.

3. Results and discussions

Fig. 2(a) plots the temperature dependence of the TMC and
LMC for several diameters of tubes and five S values, where the
external magnetic field Bz is absent. At zero temperature, T¼0 K,
the TMC is zero, which reveals that along the z direction, the
neighboring spins are strictly parallel to each other. With tem-
perature increasing, the TMC increases while the LMC decreases
until the Curie point (TC). This means that the longitudinal corre-
lation effect becomes weaker and the transverse correlation effect
stronger. The nearest neighbor spins gradually deviate from the
parallel configuration along the z direction as temperature rises. A

Fig. 1. One unit cell of a 2D monolayer with square lattice and three possible
rolling directions.
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