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a b s t r a c t

Magnetorheological (MR) fluids are described using two nondimensional numbers, the Bingham and
Mason numbers. The Mason number is the ratio of particle magnetic forces to viscous forces and de-
scribes the behavior of MR fluids at the microscopic, particle level scale. At the macroscopic, continuum
scale, Bingham number is the ratio of yield stress to viscous stress, and describes the bulk motion of the
fluid. If these two nondimensional numbers can be related, then microscopic models can be directly
compared to macroscopic results. We show that if microscopic and macroscopic forces are linearly re-
lated, then Bingham and Mason number are inversely related, or, alternatively, that the product of the
Bingham number and the Mason number is a constant. This relationship is experimentally validated
based on measurements of apparent viscosity on a high shear rate, γ̇ ≈ −10 000 s 1, Searle cell rheometer.
This relationship between Mason number and Bingham number is then used to analyze a Mason number
based result, and is also used to inform the MR fluid device design process.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Magnetorheological (MR) fluid is a fluid composed of micron
scale magnetizable particles suspended in a carrier fluid. Upon the
application of field, the particles in the fluid align to form chain
like structures, and these chains cause the fluid to develop a field
dependent yield stress. The primary application of MR fluid has
been in MR dampers and MR energy absorbers, where the con-
trollable apparent viscosity allows for a controllable damping force
or stroking load, which enables high performance vibration iso-
lation [1] or shock mitigation that can adapt to payload weight and
impact severity [2,3].

Models of magnetorheological fluids have typically taken two
perspectives: either modeling the MR fluid as a collection of mi-
croscopic particles floating in a carrier fluid, or as a bulk fluid
continuum. Microscopic modeling of MR fluids focuses on the
behavior of the particles [4–6] by examining the formation and
destruction of chain structures in the fluid with the goal of pre-
dicting yield stress. The primary forces on the particles that govern
chain formation are viscous drag of the carrier fluid on the particle
and the interparticle magnetic forces. The ratio of particle mag-
netic forces to viscous forces is known as the Mason number, Mn,
[7–9], named after the work of Mason et. al. on the behavior of
fluid droplets in the presence of electric field [10]. In the equations

of motion, the Mason number is the governing parameter of the
shear response of a particle in an MR fluid, and is an essential part
of research on dynamic models of chain formation. The Mason
number, Mn, also has value in the analysis of experimental data,
such as when apparent viscosity is plotted against Mason number,
the apparent viscosity curves collapse to a single curve, thereby
reducing the dimensionality of a dataset [7,8].

At the bulk scale, one of the idealized descriptions of MR fluids
is as a Bingham plastic [11], in which the applied magnetic field
additively induces a field controllable yield stress to a Newtonian
fluid. The Bingham number, Bi, which is the ratio of yield stress to
viscous stress, describes the extent to which the controllable yield
stress can exceed the viscous stress (typically ≫Bi  1), and is an
essential descriptor of Bingham plastic behavior. The Bingham
number can be used to calculate flow rates, flow profiles, and
pressure losses in devices using Bingham plastic fluids [12]. In
particular, for shear mode MR devices, the Bingham number re-
presents the controllable force ratio [13], and since MR fluids are
used for the purpose of generating controllable forces, the Bing-
ham number is an essential and fundamental parameter for the
understanding and analysis of MR fluids at the bulk scale.

We seek to relate the Bingham number to the Mason number,
two nondimensional numbers that represent fundamental de-
scriptions of the behavior of MR fluid at macroscopic and micro-
scopic scales respectively. In particular, we focus on MR fluids
typically used in energy absorbing devices. These MR fluids are
typically suspensions of 1–10 μm diameter carbonyl iron particles
with solids loading ranging from 20 to 50 volume percent, and
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well described by the Bingham plastic model. By mathematically
relating Bingham number to Mason number, we enable micro-
scopic Mason number based analyses to be directly extended to
macroscopic or device scale Bingham number based problems.
Alternatively, experimental Bingham number based results can be
scaled down for comparison to Mason number based particle level
analyses.

In this study, the Bingham number and the Mason number are
developed, and it is shown that if microscopic forces map linearly
to macroscopic forces, then the Bingham number and the Mason
number are inversely related, or that the product of Bingham
number and Mason number is a constant. This notion is confirmed
through measurements of apparent viscosity. We experimentally
validate the claim that microscopic and macroscopic forces are
linearly related, and that this is akin to assuming that MR fluids are
well described by the Bingham plastic model. Finally, the re-
lationship between Mason number and Bingham number is used
to examine the experimental relevance of a Mason number based
result, as well as how such a relationship would inform the MR
fluid and/or device design process.

2. Background

To motivate the usage of these nondimensional numbers, both
numbers are derived in the analytical context in which they arise.

2.1. The Bingham number

For device scale analyses, the fluid is treated as a continuum
with nonlinear rheological properties. A typical MR fluid shear
stress vs. shear rate graph is shown in Fig. 1. These shear stresses
for each field strength are typically modeled by the Bingham
plastic model,

τ τ η γ= + ˙, (1)y pl

which has a plastic viscosity, ηpl, and a yield stress, τy. The yield
stress is magnetic field dependent, and it is typical to assume that
ηpl is independent of field strength, and equivalent to the off-state
viscosity, ηoff . In MR fluids, ηpl is chosen to be the slope of the high
shear rate asymptote of the shear stress curve, and τy corresponds
to the intersection of the high shear rate asymptote with the stress
axis at γ̇ = 0.

A typical way in which MR fluid is used in damper design is the
shear mode damper [13], where an upper plate moving with ve-
locity, v, and area, A, moves over a stationary lower plate with a
gap of d between the two plates. Here, the fluid velocity profile is

linear, and the force on the upper plate is
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The force in conventional viscous dampers can be written in the
form =F c vd 0 , where c0 is the damping, and for a Newtonian fluid
in shear mode η=c A d/0 . For the shear mode MR damper, re-
arranging into this form yields
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where ceq is the equivalent damping for a fluid with a yield stress.
The ratio of equivalent damping to Newtonian damping yields the
damping coefficient
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pl0

which describes the effect that the addition of a yield stress has on
damping force. For an MR fluid, where the yield stress is field
controllable, this ratio is the controllable force ratio. The term that
governs controllability is the Bingham number,

τ
η γ

=
˙

Bi ,
(5)

y

cpl

the ratio of magnetic forces τ( )y to viscous forces η γ̇( )cpl in the fluid,

where γ̇c is the characteristic shear rate of the system, which for a
shear mode damper is γ̇ = v d/c . Since the purpose of MR fluids is to
generate a field controllable force, and the Bingham number re-
presents the controllable force ratio of an MR device, it is clear that
Bingham number is a fundamental representation of the behavior
of MR fluids. In more complicated geometries, such as in pipe flow,
the Bingham number becomes an essential intermediate quantity
in the determination of the flow rate, flow profile, and controllable
force output of an MR fluid device [12]. But at the fluid level, the
Bingham number is a descriptive, empirical quantity, and does not
tell us anything about what causes the MR effect, or how a fluid
can be modified to improve its performance.

2.2. Mason number

Modeling MR fluid at the particle level allows us to develop
predictive models of fluid behavior, providing insight into the
chain formation that underlies the MR effect. At the microscopic
scale, MR fluids consist of magnetizable particles suspended in a
carrier fluid under the influence of an applied magnetic field, H0.
Fig. 2 contains a diagram of two interacting particles under shear
and applied magnetic field. Typically, these are spherical carbonyl
iron particles with diameter σ = − μ1 10 m. The particles are

Fig. 1. Idealized rheogram or shear stress vs. shear rate diagram for an MR fluid. Fig. 2. Diagram of two particles in a shearing fluid.
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