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a b s t r a c t

Magnetohydrodynamic (MHD) three-dimensional flow of Maxwell nanofluid subject to the convective
boundary condition is investigated. The flow is generated by a bidirectional stretching surface. Thermophoresis
and Brownian motion effects are present. Fluid is electrically conducted in the presence of a constant applied
magnetic field. Unlike the previous cases even in the absence of nanoparticles, the correct formulation for the
flow of Maxwell fluid in the presence of a magnetic field is established. Newly proposed boundary condition
with the zero nanoparticles mass flux at the boundary is employed. The governing nonlinear boundary layer
equations through appropriate transformations are reduced in the nonlinear ordinary differential system. The
resulting nonlinear system has been solved for the velocities, temperature and nanoparticles concentration
distributions. Convergence of the constructed solutions is verified. Effects of emerging parameters on the
temperature and nanoparticles concentration are plotted and discussed. Numerical values of local Nusselt
number are computed and analyzed. It is observed that the effects of magnetic parameter and the Biot number
on the temperature and nanoparticles concentration are quite similar. Both the temperature and nanoparticles
concentration are enhanced for the increasing value of magnetic parameter and Biot number.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

The investigations on non-Newtonian fluids are remarkably
enhanced during the past few decades because of their practical
implications in technology and industrial processes. Many of the
materials in our daily life include apple sauce, sugar solution,
muds, chyme, soaps, emulsion, shampoos, blood at low shear rate
etc. exhibits the characteristics of non-Newtonian fluids. In the
literature, there is no single relation that characterizes all the
properties of non-Newtonian fluids which characterize all the
properties of such materials. Many models of non-Newtonian
fluids are developed by the researchers in the past. Among these
models, Maxwell fluid is a simplest subclass of rate type non-
Newtonian fluids. This model is widely used to explore the effects
of stress relaxation. The involvement of stress relaxation in the
stress tensor of Maxwell fluid makes it highly nonlinear and
complicated in comparison to Newtonian fluid. Maxwell fluid
model reduced into the simple Navier–Stokes relation when extra

stress time is zero. The boundary layer flows of viscoelastic non-
Newtonian fluids have been widely used in engineering technol-
ogy and industrial applications. Such flows commonly involved in
power engineering and food engineering, petroleum production,
polymer solutions and in polymer melt, the cooling of a metallic
plate in a cooling bath, drawing on plastic films and many others.
Abundant studies on this topic exist in the literature, but few in-
teresting and recent studies can be seen in the Refs. [1–8].

Nowadays, the cooling of electronic devices is the major in-
dustrial requirements due to the fast technology, but the low
thermal conductivity rate of ordinary base fluids includes water,
ethylene glycol and oil is the basic limitation. To overcome on such
limitation, the nanoscale solid particles are submerged into host
fluids which change the thermophysical characteristics of these
fluids and enhanced the heat transfer rate dramatically. Choi [9]
was the first who identified this colloidal suspension. The recent
developments in nanofluids and their mathematical modeling,
play vital role in industrial and nanotechnology. The nanofluids are
used in the applications such as cooling of electronics, heat ex-
changer, nuclear reactor safety, hyperthermia, biomedicine, engine
cooling, vehicle thermal management and many others. Further
the magneto nanofluids are useful in the manufacturing processes
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of industries and biomedicine applications. Examples include in
gastric medications, biomaterials for wound treatment, sterilized
devices, etc. The magneto nanoparticles can be employed in the
elimination of tumors with hyperthermia, targeted drug release
and for magnetic resonance imaging. A bulk of research articles on
nanofluids is available in the literature in which few can be seen in
the Refs. [10–20].

This paper emphasizes on the three-dimensional boundary
layer flow of Maxwell fluid induced by a bidirectional stretching
surface. Thermophoresis and Brownian motion effects are en-
countered in the energy and mass species expressions. We con-
sidered the thermal convective [21,22] and zero nanoparticles
mass flux conditions at the boundaries. The zero nanoparticles
mass flux condition was first introduced by Kuznetsov and Nield
[15] for two-dimensional boundary layer flows. Here we used this
condition for the three-dimensional boundary layer flow of Max-
well nanofluid. The governing nonlinear ordinary differential
equations are solved via homotopy analysis method [23–30] The
obtained results are sketched and discussed in detail. The values of
local Nusselt number are tabulated and examined.

2. Mathematical modeling

Consider the steady three-dimensional flow of an in-
compressible Maxwell nanofluid over a bidirectional stretching
surface. Fluid is considered electrically conducting in the presence
of constant magnetic field B0 applied in the z-direction. The Hall
and electric field effects are ignored. The induced magnetic field is
not considered for a small magnetic Reynolds number. Thermo-
phoresis and Brownian motion effects are taken into account. The
temperature at the surface is controlled by a convective heating
process which is characterized by the heat transfer coefficient hf

and temperature of the hot fluid Tf below the surface. The
boundary layer expressions governing the conservations of mass,
momentum, energy and nanoparticles concentration are
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The boundary conditions in the present problem are

( )u ax v by w k
T
z

h T T

D
C
z

D
T

T
z

z

, , 0, ,

0 at 0,
(6)

f f

B
T

= = = − ∂
∂

= −

∂
∂

+ ∂
∂

= =
∞

u v T T C C z0, 0, , as , (7)→ → → → → ∞∞ ∞

In above expressions u, v and w are the velocity components in
the x−, y− and z−directions respectively, 1λ the relaxation time,
( / )fν μ ρ= the kinematic viscosity, μ the dynamic viscosity, fρ the

density of base fluid, σ the electrical conductivity, T the tem-
perature, k c/( )fα ρ= the thermal diffusivity of the fluid, k the

thermal conductivity, c( )fρ the heat capacity of the fluid, c( )pρ the
effective heat capacity of nanoparticles, DB the Brownian diffusion
coefficient, C the nanoparticles concentration, DT the thermo-
phoretic diffusion coefficient, T∞ the temperature far away from
the surface and C∞ the nanoparticles concentration far away from
the surface.

Using the following transformations
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Eq. (1) is automatically satisfied and Eqs. (2)–(7) have the fol-
lowing forms
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where β is the Deborah number, M is the magnetic parameter, c is
the ratio of stretching rates, Pr is the Prandtl number, Nb is the
Brownian motion parameter, Nt is the thermophoresis parameter,
γ is the Biot number, Le is the Lewis number and prime stands for
differentiation with respect to .η These parameters can be ex-
pressed by the following definitions:

⎫
⎬
⎪⎪

⎭
⎪⎪( )

a M c Pr Nb

Nt Le

, , , , ,

, , .
(15)

B
a

b
a

c D C

c

c D T T

c T

h

k a D

1
2 ( )

( )

( )

( )

f

p B

f

p T f

f

f

B

0
2

β λ

γ

= = = = =

= = =

σ
ρ

ν
α

ρ

ρ ν

ρ

ρ ν
ν α−

∞

∞

∞

The local Nusselt number Nux is defined as
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It is noted that the dimensionless mass flux represented by a
Sherwood number Shx is now identically zero and Re ux/x ν= is the
local Reynolds number.

3. Series solutions

The initial guesses and linear operators for homotopic solutions
are

T. Hayat et al. / Journal of Magnetism and Magnetic Materials 389 (2015) 48–55 49



Download English Version:

https://daneshyari.com/en/article/1798923

Download Persian Version:

https://daneshyari.com/article/1798923

Daneshyari.com

https://daneshyari.com/en/article/1798923
https://daneshyari.com/article/1798923
https://daneshyari.com

