Contents lists available at ScienceDirect



Journal of Magnetism and Magnetic Materials

journal homepage: www.elsevier.com/locate/jmmm



# First principles study of structural, magnetic and electronic properties of C-doped monoclinic ZrO<sub>2</sub>



You Xie <sup>a,b,\*</sup>, An-Ning Zhou <sup>b</sup>, Ya-Ting Zhang <sup>b</sup>, Yi-Ping Huo <sup>c</sup>, Su-Fang Wang <sup>a</sup>, Jian-Min Zhang <sup>c</sup>

<sup>a</sup> College of Sciences, Xi'an University of Science and Technology, Xi'an 710054, China

<sup>b</sup> College of Chemistry & Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, China

<sup>c</sup> College of Physics and Information Technology, Shaanxi Normal University, Xi'an 710062, China

#### ARTICLE INFO

Article history: Received 3 December 2014 Received in revised form 29 March 2015 Accepted 9 April 2015 Available online 11 April 2015

*Keywords:* Monoclinic ZrO<sub>2</sub> Spin splitting Electronic properties First-principle

#### ABSTRACT

Structural, magnetic and electronic properties of C-doped monoclinic  $ZrO_2$  have been studied by using the first principles projector augmented wave potential within the generalized gradient approximation as well as taking into account on site Coulomb repulsive interaction. The optimized structures show the lattice constants *a*, *b*, *c* and monoclinic angle  $\beta$  of C-doped monoclinic  $ZrO_2$  change slightly. While the lattice constants *a*, *b*, *c* and monoclinic angle  $\beta$  of C<sub>1</sub>-doped monoclinic  $ZrO_2$  are smaller than that of C<sub>2</sub>-doped monoclinic  $ZrO_2$ . The total magnetic moment of C-doped monoclinic  $ZrO_2$  is mainly contributed by the atomic magnetic moment of C atom. For C atom substituting O atom, the systems are found to be half-metallic material and usable in magnetoelectronic and spintronic devices.

© 2015 Published by Elsevier B.V.

## 1. Introduction

As a wide band gap transition metal oxide material, zirconia (ZrO<sub>2</sub>) is a very important material due to its outstanding properties such as high dielectric constant, wide optical band gap, high chemical, and thermal stabilities, low optical loss and high transparency in visible and near-infrared regions [1–6]. Because of these properties, it can be found in a wide array of applications in numerous technological and materials fields [7–17]. Zirconia was discovered as baddeleyite early in 1892 by Hussak. Since then, about 10 distinct phases of zirconia have been observed to date experimentally, such as amorphous, metastable tetragonal, monoclinic, tetragonal, cubic structures and so on. Among these  $ZrO_2$  phases, the monoclinic ( $P2_1/c$ ,  $C_{2h}^5$ ) occurs at temperature from zero to 1180 °C, the tetragonal  $(P4_2/nmc, D_{4h}^{15})$  occurs at the temperature from 1180 to 2370 °C and the cubic fluorite (Fm3m,  $O_{h}^{5}$ ) is found at temperature from 2370 to 2600 °C. The temperature in which the tetragonal to cubic transformation occurs can be lowered by the addition of solutes such as MgO, CaO or Y<sub>2</sub>O<sub>3</sub>, allowing not only the achievement of the stabilized cubic phase even at room temperature but also the production of the materials with extremely high strength, toughness and thermal-shock resistance [18].

E-mail address: xieyou@hotmail.com (Y. Xie).

Recently, unexpected ferromagnetism called d<sup>0</sup> ferromagnetism has been successively observed in undoped ZrO<sub>2</sub> by Venkatesan et al. [19], which is extremely useful for potential applications in spintronic devices. Crystal structures and properties of the transition metal doped cubic ZrO<sub>2</sub> was experimentally and theoretical studied by several groups [20-23]. At the same time, C substitution has also attracted much attention as potential ways to realize ferromagnetism in ZrO<sub>2</sub> and TiO<sub>2</sub> [24–27]. However, only the total and/or partial (s, p and d) densities of states (DOS) are given out, which can not reveal the spin splitting in ZrO<sub>2</sub>. So it is necessary to study the detailed orbital-decomposed electronic structures to check the interaction between the different atoms in doped ZrO<sub>2</sub>. In this paper, the structural, magnetic and electric properties of C-doped monoclinic ZrO<sub>2</sub> (*m*-ZrO<sub>2</sub>) are investigated by using the first principles projector augmented wave (PAW) potential within the generalized gradient approximation as well as taking into account the on-site Coulomb repulsive interaction (GGA+U). Owing to the magnetic properties of  $ZrO_2$  with monoclinic structure have been widely studied in past years. The main purpose of this work will be helpful for designing and searching for magnetic properties of semiconductor materials.

## 2. Calculation methods and models

Using the Vienna ab-initio simulation package (VASP) based on the density function theory (DFT), the calculations are performed

<sup>\*</sup> Corresponding author at: College of Sciences, Xi'an University of Science and Technology, Xi'an 710054, China.

[28–31]. The electron–ionic core interaction is represented by the projector augmented wave (PAW) potentials [32] which are more accurate than the ultra-soft pseudopotentials. To relax the ions into their ground states, a conjugate-gradient algorithm is used, and the energies and the forces on each ion are converged within  $1.0 \times 10^{-5}$  eV/atom and 0.01 eV/Å, respectively. The cut off energy for the plane-waves is chosen to be 400 eV. The O 2p<sup>4</sup>2s<sup>2</sup>, C 2p<sup>2</sup>2s<sup>2</sup> and Zr 4s<sup>2</sup>4p<sup>6</sup>4d<sup>2</sup>5s<sup>2</sup> electrons are treated as valence electrons. The k-point meshes of Brillouin zone sampling in unit cell, based on the Monkhorst–Pack scheme [33], are  $11 \times 11 \times 11$  together with a Gaussian smearing broadening of 0.1 eV. The Perdew–Burke–Ernzerhof (PBE) [34] formulation of the generalized gradient approximation taking into account the on-site Coulomb repulsive interaction (GGA+U, U=2 eV for Zr) is chosen to treat electron exchange and correlation [35].

The structure of m-ZrO<sub>2</sub> (one cell) is shown in Fig. 1(a) with four-formula-unit supercell. As we know, the m-ZrO<sub>2</sub> can be described as a distorted fluorite structure with two oxygen sites O<sub>1</sub> and O<sub>11</sub> (O<sub>1</sub> where oxygen atom is coordinated to three Zr atoms in an almost planar environment and O<sub>11</sub> where the central oxygen atom is surrounded by a distorted tetrahedron of four Zr atoms, as shown in Fig. 1(b)). We employ a  $2 \times 2 \times 2$  periodic supercell with 96 atoms in which two unit-cell are arranged in each *x*, *y* and *z* directions to avoid the interaction of the doping and its periodic images. Because the two oxygen sites O<sub>1</sub> and O<sub>11</sub> are now nonequivalent, there are two cases for the one C atom substituting one O atom: substituting oxygen in  $O_I$  or  $O_{II}$  site by carbon, which is marked as  $C_1$ -doped *m*-ZrO<sub>2</sub> (Fig. 2(a)) or  $C_2$ -doped *m*-ZrO<sub>2</sub> (Fig. 2(b)), respectively.

## 3. Results and discussions

The calculated optimized lattice constants and monoclinic angle  $\beta$  of the C-doped *m*-ZrO<sub>2</sub> are listed in Table 1. It can be seen that the lattice constants a, b, c and monoclinic angle  $\beta$  change slightly with one carbon atom substituting oxygen atom comparing with m-ZrO<sub>2</sub>. Although the electronegativity of 2.55 for carbon is smaller that that of 3.44 of oxygen, the ionic radius of 0.77 Å for carbon is much smaller than that of 1.40 Å for oxygen. We also find the lattice constants a, b, c and monoclinic angle  $\beta$  of C<sub>1</sub>-doped m- $ZrO_2$  is slightly smaller than that of  $C_2$ -doped *m*- $ZrO_2$ . This because  $C_2$  adjacent four Zr atoms  $(d_{C_2-Zr})$  is consistent with the fact that the interatomic distance increases with increasing coordination number. From the calculation, it is found the obvious magnetic moments of the nearest O and Zr atoms in both C1 and C2-doped structures suggest that the wave function of the C extends to the nearest O and Zr atoms. The atomic magnetic moments of C, O (O where oxygen atom nearest to carbon atom) and Zr (where zirconium atom nearest to carbon atom) are also listed in Table 1. The



**Fig. 1.** Crystal structure of *m*-ZrO<sub>2</sub> (a) together with two oxygen sites O<sub>1</sub> and O<sub>11</sub> (b). O<sub>1</sub> Where oxygen is coordinated to three Zr atoms in an planar environment and O<sub>11</sub> where the central oxygen atom is surrounded by a distorted tetrahedron of four Zr atoms.



Fig. 2. Crystal structure of C-doped m-ZrO<sub>2</sub>: (a) substituting O<sub>1</sub> atom by C atom(C<sub>1</sub>) and (b) substituting O<sub>1</sub> atom by C (C<sub>2</sub>).

Download English Version:

https://daneshyari.com/en/article/1798930

Download Persian Version:

https://daneshyari.com/article/1798930

Daneshyari.com