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a b s t r a c t

A reformulation of the Discrete Energy-Averaged model for the calculation of 3D hysteretic magnetiza-
tion and magnetostriction of iron-gallium (Galfenol) alloys is presented in this paper. An analytical so-
lution procedure based on an eigenvalue decomposition is developed. This procedure avoids the sin-
gularities present in the existing approximate solution by offering multiple local minimum energy di-
rections for each easy crystallographic direction. This improved robustness is crucial for use in finite
element codes. Analytical simplifications of the 3D model to 2D and 1D applications are also presented.
In particular, the 1D model requires calculation for only one easy direction, while all six easy directions
must be considered for general applications. Compared to the approximate solution procedure, it is
shown that the resulting robustness comes at no expense for 1D applications, but requires almost twice
the computational effort for 3D applications. To find model parameters, we employ the average of the
hysteretic data, rather than anhysteretic curves, which would require additional measurements. An ef-
ficient optimization routine is developed that retains the dimensionality of the prior art. The routine
decouples the parameters into exclusive sets, some of which are found directly through a fast pre-
processing step to improve accuracy and computational efficiency. The effectiveness of the model is
verified by comparison with existing measurement data.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Magnetostrictive materials undergo dimensional changes
when exposed to a magnetic field and exhibit magnetization
changes when subjected to external stress. Design and optimi-
zation of magnetostrictive systems using finite element tech-
niques require constitutive models that are robust and valid for
arbitrary magnetic field and stress inputs. The robustness of a
constitutive model is dictated by the complexity of the material
behavior.

Galfenol (FeGa) is a magnetostrictive material that was devel-
oped at the Naval Surface Warfare Center [1]. Galfenol is well
suited for actuation and sensing applications as it possesses high
tensile strength (∼500 MPa), demonstrates moderate magnetos-
triction (∼350 ppm) under very low magnetic fields (∼8 kA/m),
and exhibits limited temperature dependence ([2]) in its active

properties between �20 and 80 °C. In addition, Galfenol has very
low hysteresis, a high Curie temperature (675 °C), and corrosion
resistance in aqueous environments [2,3]. Galfenol further benefits
from its moderate machinability and ductility, and its relatively
inexpensive constituent materials. A detailed review of these al-
loys was presented by Atulasimha and Flatau [2].

Due to nonlinear response of magnetostrictive materials,
modeling their behavior for arbitrary stress and magnetic field
inputs is challenging. A wide range of models have been proposed.
At one extreme, a phenomenological approach fits a curve or
surface to the measurement data, which provides efficiency but
ignores the underlying physics. At the other extreme, micro-
magnetic models consider all known energies and are very accu-
rate. Macroscopic models use an intermediate approach by relat-
ing the macroscopic response of the material to simplified de-
scriptions of the microscopic behavior. Macroscopic models
therefore strike a balance between efficiency, accuracy, and pre-
dictive capability. The classical macroscopic models are the Pre-
isach model [4], the Globus model [5], the Jiles–Atherton model
[6], and the Stoner–Wohlfarth model [7]. Liorzou et al. [8] compare
these models in detail.
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Armstrong [9] proposed an incremental model for magnetoe-
lastic hysteresis in which the bulk magnetization and magnetos-
triction are the expected values of a large collection of non-in-
teracting magnetic moments. The probability density function is a
Boltzmann distribution, where minimum energy orientations are
more probable. The Armstrong model is computationally in-
efficient, as it searches for global energy minima. Atulasimha et al.
[10] improved efficiency by only considering 98 fixed orientations.
Evans and Dapino [11] proposed a discrete energy-averaged (DEA)
model, which greatly improved efficiency while maintaining ac-
curacy by solving for the local energy minimum about each of
Galfenol's six easy crystallographic directions. The speed of this
model was further increased by Chakrabarti [13], whose model is
the starting point of our development.

The DEA model calculates the magnetization unit directions
that minimize a Gibbs free energy defined locally about the six
easy directions. However, the resulting minimization problem is
not amenable to an explicit analytical solution. To alleviate this
shortcoming, Evans and Dapino [11] linearized the normalization
constraint about each easy direction, which is valid for small ro-
tations of the magnetic moments about the easy directions. This
novel treatment resulted in an explicit approximate solution,
whose error is minimal since moments that have rotated far from
the easy axes are more energetic, and thus less probable [12].
Nonetheless, the approximate magnetization directions may sig-
nificantly violate the unity norm constraint for large inputs. Post-
normalization of the directions was proposed by Chakrabarti and
Dapino [14], but the resulting directions can still deviate from the
true energy minima for generic 3D inputs. Additionally, this so-
lution procedure is prone to singularities, which could burden the
computation, especially when the method is integrated into finite
element solvers.

The primary objective of this paper is to develop a robust so-
lution procedure for the DEA model that avoids singularities. First,
we improve the DEA model by incorporating a more thorough
expression for the magnetostriction in cubic ferromagnets and by
formulating the model based on the average of hysteretic data,
which precludes the need for additional anhysteretic data. Then,
an analytical solution of the resulting model is derived that exactly
solves the constrained energy minimization. Depending on the
dimension of the application, the solution procedure offers mul-
tiple solutions for each easy direction, which allows it to circum-
vent singularities and completely reveal the material behavior for
arbitrary magnetic field and stress inputs. By having an analytical
solution, the model is significantly simplified for 2D and 1D ap-
plications. A novel parameter optimization routine is developed,
which decouples the model parameters into two sets. One set is
quickly calculated through a preprocessing step, while the other is
determined through a sophisticated constrained minimization. It
is shown that the increased robustness of the proposed model
comes at no expense for 1D applications, but requires almost twice
the computation time for generic 3D applications. The model is
validated through comparison with existing measurements and
the former model.

The rest of the paper is organized as follows. A brief review of
the DEA model and the existing approximate solution is shown in
Section 2. Section 3.1 presents a reformulation of the DEA model
and the analytical solution procedure. Section 4 gives the reduced
formulation of the model for 2D and 1D applications. Parameter
optimization is discussed in Section 5, which is followed by model
validation and the conclusions.

2. Review of 3D magnetostriction (λ) and magnetization (M)
calculation

Evans and Dapino [11] proposed a discrete energy-averaged

(DEA) model that computes the magnetization directions of me-
soscopic magnetic domains by minimizing the Gibbs free energy
that is defined locally about each easy crystallographic direction.
The Gibbs free energy in the vicinity of the kth easy direction is
composed of magnetocrystalline (anisotropy), magnetoelastic
(magnetomechanical coupling), and magnetic field (Zeeman) en-
ergies. The minimization procedure applied to Evans and Dapino's
formulation requires as many matrix inversions as the number of
easy directions. To reduce the number of matrix inversions to one,
Chakrabarti [13] slightly modified the anisotropy energy. Accord-
ingly, the Gibbs free energy can be written in matrix notation as
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directions (the 100〈 〉 family of six directions for Galfenol). The
magnetic stiffness matrix K and magnetic force vector b along the
kth easy direction are given by
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respectively, where I is the 3�3 identity matrix; λ100 and λ111 are
magnetostriction constants; μ0 and Ms are, respectively, the va-
cuum permeability and saturation magnetization; H H HH [ ; ; ]1 2 3=
is the magnetic field vector; and T T T T T TT [ ; ; ; ; ; ]1 2 3 4 5 6= stands for
the stress tensor written in contracted vector notation, where
T T1 11= , T T2 22= , T T3 33= , T T4 12= , T T5 23= , and T T6 13= .

The macroscopic 3D magnetostriction λ and magnetization M
are defined as weighted sums of the response due to the r mini-
mum energy directions,

,
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anξ and
k
λ denote, respectively, the bulk anhysteretic volume

fraction and the magnetostriction tensor written in vector nota-
tion for the kth domain. Letting Ω be a smoothing factor, the
former is calculated as a Boltzmann-type, energy-weighted aver-
age as
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and the magnetostriction in tensor notation is given as
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2.1. Calculation of m
k

(approximate solution)

The application of an external magnetic field or stress changes
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