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a b s t r a c t

The relaxation of non-equilibrium redistributions of the magnetization in a model Ni–Fe heterostructure
is analyzed on the basis of the Landau–Lifshitz equation with the relaxation terms proposed by
Bar'yakhtar. Bar'yakhtar‘s terms account for both the relativistic (local) and exchange (nonlocal) re-
laxations. It is demonstrated that the role of the nonlocal relaxation term (a spin current flowing be-
tween layers) increases for smaller systems. For nanometer-size systems the nonlocal relaxation term
significantly enhances the relaxation of the Ni layer magnetization back to equilibrium. The reason of this
size dependence is a competition of fast magnetization dynamics, induced by the nonlocal relaxation
term near an interface between metals and slow, relativistic dynamics, which occurs at each point of the
Ni–Fe heterostructure. This study provides insight in how to achieve an exceptionally fast re-
magnetization in magnetic heterostructures after laser excitation.

& 2015 Published by Elsevier B.V.

1. Introduction

Laser-induced non-equilibrium magnetization dynamics in in-
homogeneous magnetic materials is currently an area of funda-
mental and practical importance that is attracting a lot of atten-
tion. Several different kinds of inhomogeneous materials have
recently been studied.

Laser excitation of thin magnetic films exhibiting a labyrinth-
like network of oppositely magnetized domains with structure
sizes on the nanometer lengthscale demonstrates the spin trans-
port between differently magnetized regions [1]. This spin trans-
port leads to domain-topography-dependent contribution to
magnetization dynamics in the sample.

The excitation of ferrimagnetic GdFeCo alloys with a short laser
pulse caused a switching of the magnetization on a picosecond
timescale [2,3], something which holds promise for the develop-
ment of ultrafast magnetic recording. The origin of the switching
has been investigated in recent theoretical studies [3–6]. It is im-
portant here that GdFeCo alloy displays nanoscale chemical and
magnetic inhomogeneities that affect the spin dynamics [7]. In
particular, the probe of the optically excited non-equilibrium spin
dynamics in GdFeCo on nanometer length scales and femtosecond
timescales reveals the Gd spin reversal in Gd-rich nanoregions
within the first picosecond driven by the non-local transfer of

angular momentum from larger adjacent Fe-rich nanoregions.
Other class of inhomogeneous materials—which is in the focus

of the present study—is that of layered metallic heterostructures
[8–11] as well as layered magnetic tunnel junctions [12] and
synthetic ferrimagnets [13,14]. For these engineered magnetic
materials the optical manipulation of the magnetic order is a re-
cent goal [13].

Laser excitation of a Ni–Ru–Fe trilayer system from a Ni side
revealed an intriguing magnetization dynamics in Ni and Fe layers:
after electron thermalization, the magnetization relaxation back to
equilibrium is much faster for an antiparallel alignment of the
magnetization of the Ni and Fe layers than for a parallel config-
uration [8,15]. Strong dependence of the magnetization recovery
dynamics on a relative orientation of the magnetization in differ-
ent layers has recently been observed, too, for magnetic tunnel
junctions consisting of two CoFeB layers separated by a thin MgO
barrier [12].

In the discussed above experiments an evolution of the mod-
ulus of the magnetization vector (a longitudinal evolution of the
magnetization) has been observed. Note that the longitudinal
evolution of the magnetization cannot be treated on the basis of
the Landau–Lifshitz equation [16], with the standard relaxation
term (Landau–Lifshitz [16] or Gilbert [17] terms), which describes
a transversal magnetization dynamics and consequently preserves
the magnetization length.

The difference in magnetization evolution of the two config-
urations (the parallel or antiparallel alignments) is intriguing as no
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difference would be expected for the magnetization evolution in
the two layers treated on the basis of frequently used for a de-
scription of the longitudinal evolution of the magnetization the
Landau–Lifshitz–Bloch equation [18,19], which is local and the
magnetization dynamics proceed independently in the Ni and Fe
layers.

The explanation [11] of this unusual dynamics in the Ni–Ru–Fe
trilayer has been provided on the basis of the Landau–Lifshitz
equation with the relaxation term proposed by Bar'yakhtar [20–
22], called also LLBar equations [23]. LLBar equations were derived
on the basis of general symmetry arguments and Onsager rela-
tions, and employ the concept of both the relativistic (local) and
exchange (nonlocal) spin relaxations. Since the general principles
used for the derivation of LLBar equations are valid for tempera-
tures both below and above the Curie temperature, it follows that
LLBar equations are valid for any temperature, see more detailed
discussion in [24]. LLBar equations were used for the description of
relaxation of magnetic solitons [25–28], especially Bloch point
[28]. LLBar equations give the explanation of the reversal effect in
GdFeCo alloys [4,5]. For the Ni–Ru–Fe trilayer the importance of
the nonlocal character of the magnetization recovery is estab-
lished, that is, only the accounting of the nonlocal relaxation could
qualitatively explains the experimental observation [11]. As the
nonlocal relaxation term conserves the total magnetization of the
sample, for the dominating nonlocal relaxation the evolution from
initial nonuniform magnetization redistributions is concurrent
with the creation of a strong spin current flowing between the
layers.

The analysis of the non-equilibrium magnetization evolution in
[11] was performed for the concrete experimental parameters of
the system, that is, 20% of the magnetization is removed from Ni to
Fe and the size of the system is of the order of several nanometers
[8].

In this paper we investigate an influence of the nonlocal re-
laxation term (the spin current flowing between the layers) on the
nonlinear relaxation of the Ni layer magnetization back to equili-
brium in the Ni–Fe heterostructure for different sizes of the
sample and parameters of the initial magnetic redistributions. We
demonstrate that the strong spin current from Fe to Ni increases
the relaxation rate of the Ni layer magnetization back to equili-
brium. For a sufficiently large system size this effect is small and
the relaxation of the Ni layer magnetization is determined by the
relativistic relaxation. However with a decrease in the system size
the relative contribution of the nonlocal relaxation term increases.
For a nanometer-size system the evolution of the Ni layer mag-
netization is driven primarily by the spin current between the
layers.

2. Formulation of the problem

Here we briefly state how to model magnetic heterostructures,
for details see [11]. For a typical geometry of the experiment with
ultrafast dynamics in the Ni–Fe and Ni–Ru–Fe heterostructures a
quasi one-dimensional evolution of the magnetization is expected
for our problem [8]. For the longitudinal evolution only the length

of the magnetization M M= |
→

| enters the equations. Adopting the
Landau model for the thermodynamic potential LLBar equations
take the following form [11]:
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of a bulk material
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is an effective magnetic field. The first term on the right-hand side
of Eq. (1) describes the relativistic (local) relaxation and the
second term corresponds to the exchange (nonlocal) relaxation.
Here ξ is a dimensionless coordinate measured in units of
x A20 χ= || , A is an inhomogeneous exchange constant,

dM dH/χ =|| is a longitudinal magnetic susceptibility of a material
in the equilibrium state and at zero magnetic field, t is a
dimensionless time measured in units of t 2 / r0 χ λ= || , which is of
the order of the time of the longitudinal uniform relaxation of the
magnetization (for nickel t0 is of the order of a few picoseconds
[29]). The value of x0 far from the Curie temperature is of the order
of a lattice constant [28,29], but it becomes large in the vicinity of
the critical temperature. Note that it is difficult to make formal
arguments for the use of the continuous approximation for
nonuniform states with the characteristic sizes of the order of a
few nanometers. However the using of continuous LLBar equations
for a description of the evolution of strongly nonuniform states
provides an explanation of the recent experimental observations
[11]. Additionally the comparative analysis of discrete and con-
tinuous models for magnetic vortices [30] and domain walls [31]
in highly anisotropic magnets shows quite good agreement even
for the characteristic sizes like 1.5–2 lattice constants. So we
believe that the use of continuous approximation is a good
approach to the problem and significantly simplifies (compared
to the use of discrete models) the analysis.

The quantity /nl rε λ λ= is the ratio of the nonlocal (exchange)
and relativistic relaxation constants. The nonlocal constant nlλ can
be determined from the asymptotic behavior for short-wave
magnon damping, and then used for a description of highly non-
uniform evolution of M. For itinerant-electron ferromagnets, the
short-wavelength asymptotics for magnons decrement (called
q2-damping) was recently calculated microscopically [32]. The
value of rλ (or, equivalently, Gilbert constant Gα ) found, say, from
ferromagnetic resonance measurements, can be then used for the
analysis of uniform perturbations of M.

We consider the magnetization relaxation in the Ni–Fe het-
erostructure for two limiting cases: 0.1ε = , where the relativistic
relaxation dominates, and ε ¼ 200, where the nonlocal relaxation
(the spin current flowing from Fe to Ni) enhances the relaxation of
the Ni layer magnetization. Note, again, that only the accounting
for the strong nonlocal term ( 200)ε = could qualitatively explain
the experimental observation [11].

To model the Ni–Fe heterostructure we choose the interface
between the metals as the 0ξ = point; the region 0ξ <
corresponds to Ni and 0ξ > to Fe. Within the considered model
systems of contacted layers of different magnets, the interfaces are
considered as very thin, but of finite width, of the order of
one atomic size; for the parallel configuration we chose
m ( ) (5/4) (1/4) tanh ( )0 ξ ξ= + . This corresponds to the values
m 10 = inside the nickel layer and m 1.50 = inside the iron layer.
The value of m is normalized to the equilibrium magnetization of
nickel. As our aim is to demonstrate the general features of the
evolution we suppose that the values of material parameters are
same for the Ni and Fe layers of the system and we present the
calculations for the parallel configuration. As the interface be-
tween metals is thin, qualitatively, conclusions to an influence of
the nonlocal term (spin current) on the relaxation time of the
Ni layer magnetization are also valid for the antiparallel
configuration.

The laser pulse (with duration of less than 100 fs) has, after
electron thermalization (for metals happens approximately within
300 fs), induced a highly nonequilibrium magnetization redis-
tribution m ( )ξΔ . Then the relaxation of m ( )ξΔ back to equilibrium
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