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a b s t r a c t

Based on the experimental synthesis of organic compound verdazyl radical β-3-(2,6-dichlorophenyl)-
1,5-diphenylverdazyl, consisting of four antiferromagnetic couplings, we study the magnetic properties
and thermodynamic behaviors for different antiferromagnetic interactions using Green’s function
theory. Under different fields, there are five regimes containing two gapless phases and three
magnetization plateaus (M¼0, 1/2 and saturated magnetization) distinguished by four critical lines,
which are evidenced by the two-site entanglement entropy and closely related to the energy spectra. In
addition, we calculate the susceptibility and specific heat, to demonstrate the low-lying excitations at
low temperatures. It will provide guidance for us to synthesize varieties of unconventional magnetic
materials, and stimulate future studies on quantum spin systems.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Low-dimensional quantum spin systems are an attractive field
in condensed matter physics in the past decades. In particular,
the S¼1/2 Heisenberg antiferromagnetic chain (HAFC) has been
intensively investigated in strongly correlated quantum many-
body systems, because it is one of the simple quantum spin
systems that can be used to simulate various quantum behavior
of a wide range of materials.

Among them, the bond alternating chain (BAC) has been widely
studied both theoretically [1–8] and experimentally [9–12]. Man-
aka and Yamada [9] reported that the S¼1/2 compound (CH3)
CHNH3CuCl3 (IPACuCl3) was ferromagnetic (F)- antiferromagnetic
(AF) alternating chain with an energy gap in terms of Haldane
conjecture [13]. In addition, the magnetic properties such as the
magnetization, the susceptibility and the specific heat of BAC with
period n¼3 (AF-AF-F and F-F-AF) were also studied by Gu et al. [4].
There was another BAC with fourfold magnetic periodicity, which
consists of AF-AF-F-F [6,12], AF1-AF2-AF1-F [7,8], and F-AF1-F-AF2
[14]. In such system, there is a gap, corresponding to the excitation
from the singlet ground state to the triplet excited state without

magnetic field. In 2013, Yamaguchi et al. [15] have synthesized a
single crystal of the verdazyl radical β-3-(2,6-dichlorophenyl)-1,5-
diphenylverdazyl and analyzed its crystal structure, which can be
described as a spin S¼1/2 tetrameric HAFC with AF1-AF2-AF3-AF2
interactions. Meanwhile, they also observed that the modulation
of magnetic interaction can be realized by using chemical mod-
ification [16]. The magnetic susceptibility, magnetization curves
and specific heat have been successfully explained. In order to
further explore the quantum nature of magnetization plateaus and
the phase diagram, the quantum phase transition and thermo-
dynamics for different antiferromagnetic couplings will be studied
in this paper. It will provide guidance for us to synthesize a variety
of unconventional magnetic materials, and stimulate future stu-
dies on quantum spin systems.

2. Model and Hamiltonian

From the structure of verdazyl radical β-3-(2,6-dichlorophenyl)
-1,5-diphenylverdazyl (β�2;6�Cl2�V) illustrated in Fig. 1 of Ref.
[15], there are three types of dominating interaction J1, J2 and J3,
respectively. The spin Hamiltonian reads

H¼∑
i
½ðJ1 S

!
4iþ1d S

!
4iþ2þ J2 S

!
4iþ2d S

!
4iþ3þ J3 S

!
4iþ3d S

!
4iþ4

þ J2 S
!

4id S
!

4iþ1ÞΔ�hðSz4iþ1þSz4iþ2þSz4iþ3þSz4iþ4Þ� ð1Þ
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where Ji40 (i¼1, 2, 3) are antiferroagnetic couplings between the
nearest spins along the chain and ð S!id S

!
jÞΔ ¼ Sxi S

x
j þSyi S

y
j þηSzi S

z
j

with η denoting the anisotropy, h¼ gμBB is defined as the reduced
magnetic field.

By performing the Jordan–Wigner (JW) transformation [17–19],
the Hamiltonian (1) becomes

H¼∑
i

1
2
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We would like to mention that the phase transitions are
signaled by the two-site entanglement entropy [20,21]

Sij ¼ �Tr½ρij lnðρijÞ� ð3Þ
wherein ρij, consisting of correlation functions, is the two-site
reduced density matrix of the system at site i and j. Herein, we
define the two-site entanglement entropy S41 connected by J2
between cells, and S12, S23, and S34 connected by J1, J2 and J3 inside
the cell, respectively.

To calculate the correlation functions, and perform magnetic and
thermodynamic properties, we employ the equations of motion
method of retarded Green’s function [22,23], which is described as

Gijðt�t0Þ ¼{aiðtÞ; bþ
j ðt0Þc ¼ � iθðt�t0Þ aib

þ
j þbþ

j ai
D E

ð4Þ

where the subscripts i and j label lattice sites. After the time Fourier
transformation, the Green’s function is put into the equation of
motion,

ω{ai; b
þ
j c ¼ ½ai; bþ

j �þ
D E

þ{½ai;H�; bþ
j c ð5Þ

For the term {½ai;H�; bþ
j c of Eq. (5), by using a similar

equation of motion as Eq. (5), it will make the higher-order
Green’s function appearing, giving rise to an infinite set of coupled
equations. By using bond-mean-field theory (BMFT), we adopt the
decoupling scheme [24] for Ising quartic term in Eq. (5)

αþ
i αiαþ

iþ1αiþ1 � 〈αiαþ
iþ1〉α

þ
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iþ1〉〈αiþ1αþ

i 〉; ðα¼ a; b; c; dÞ ð6Þ

For further Fourier transformation into momentum space, the
Green’s function can be expressed as

Gij ¼
1
N
∑
k
gðkÞeikði� jÞ ð7Þ

The integral of the wave vector k is along the chain direction.
So, the momentum space Green’s function gðk;ωÞ can be char-
acterized as a function of wave vector k and the elementary
excitation spectrum ω¼ωðkÞ.

According to the standard spectral theorem, the correlation
function of the fermion operators can be obtained by

bþ
j ai

D E
¼ i
2πN

∑
k
eikði� jÞ

Z
dω

eβωþ1
½gðk;ωþ i0þ Þ�gðk;ω� i0þ Þ� ð8Þ

where β¼ 1=kBT , kB and T are the Boltzmann’s constant and the
absolute temperature, respectively.

Then, the average magnetization M per cell and magnetic
susceptibility χ can be described as

M¼ 1
N
∑
i

Sz4iþ1

� �þ Sz4iþ2

� �þ Sz4iþ3

� �þ Sz4iþ4

� �� 	
; χ ¼ ∂M

∂H
ð9Þ

The specific heat can be expressed as

CV ¼ d〈H〉
dT

ð10Þ

Therefore the above equations can be solved self-consistently.
In the calculations, an initial state, composed of correlation
functions, is put into the equations to produce resultant values.
The iteration goes on until the convergence is reached.

3. Results and discussion

In the following discussion, J2 is taken to be an energy unit, and
other parameters J1, J3 are set in unit of J2. In this paper, the results
are obtained with the anisotropy parameter is set to 0.05. First, we
start our analysis with the (J1, h) phase diagram at zero tempera-
ture for J3¼0.6, and J3¼2.0, respectively. Whether or not J3 is
larger than J2, Fig. 2(a) and (b) present that both the phase
diagrams are composed of five regimes distinguished by four
critical lines (labeled h1, h2, h3, and h4 in the figure), similar to
that of the tetrameric ladder-like system [25]. The regimes I, III and
V are magnetization plateaus with 0, 1/2 and saturation magne-
tization plateau (Ms), while the regimes II and IV are gapless
phases.

For further visualizing the field dependence of magnetization,
the magnetization curves are shown in Fig. 3(a)–(c). Apparently,
the appearance of three plateaus satisfies the OYA theory [26].
When J1 equals J3, the fourfold magnetic periodic system becomes
twofold period, and the 1/2 magnetization plateau disappears,
which is shown in Fig. 3(b). While the 1/2 magnetization plateau
occurs during the magnetization process for the case that J1 is not
the same as J3, as depicted in Fig. 3(a) and (c). When J1 is smaller
than J3, the spin-singlet pairs connected by J1, J2 and J3 are all
destroyed, wherein the singlet between 4iþ1 and 4iþ2 plays the
dominate role, which is confirmed by Fig. 3(a). From the figure, it
can be seen that the magnetic moments of all the four sites in the
unit cell contribute to the 1/2 plateau, yet the m1 and m2 win over
m3 and m4. When J1 is larger than J3 (see Fig. 3(c)), the spin-singlet
pairs are also destroyed for the 1/2 plateau, wherein the singlet
between 4iþ3 and 4iþ4 is more easily destroyed than the other
singlet-pairs, and the m3 and m4 win over m1 and m2. Fig. 3(d)–
(f) plot the h dependence of the two-site entanglement entropy.

Fig. 1. Sketch of the tetrameric structure of β�2;6�Cl2�V along the a axis. The
solid circles represent spin-1/2. The dashed rectangle is magnetic unit cell.

Fig. 2. The (J1, h) phase diagram for (a) J3¼0.6; and (b) J3¼2.0.
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