Contents lists available at ScienceDirect

Journal of Magnetism and Magnetic Materials

journal homepage: www.elsevier.com/locate/jmmm

In-situ Lorentz microscopy of Fe₈₅Si₂B₈P₄Cu₁ nanocrystalline soft magnetic alloys

Zentaro Akase ^{a,b,*}, Shinji Aizawa ^b, Daisuke Shindo ^{a,b}, Parmanand Sharma ^c, Akihiro Makino ^{c,d}

^a Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan

^b Center for Emergent Matter Science, RIKEN, Wako, Saitama 351-0198, Japan

^c Research and Development Center for Ultra High Efficiency Nano-crystalline Soft Magnetic Materials, Institute for Materials Research,

Tohoku University, Sendai 980-8577, Japan

^d Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan

ARTICLE INFO

Article history: Received 30 April 2014 Received in revised form 30 June 2014 Available online 22 September 2014

Keywords: Nanocrystalline soft magnetic alloy Magnetic domain-wall motion Lorentz microscopy

ABSTRACT

Microstructure dependence of magnetic properties of soft magnetic Fe–Si–B–P–Cu nanocrystalline alloys were studied by using in-situ Lorentz microscopy in a transmission electron microscope equipped with a magnetizing system. In particular, we investigated in detail motion of magnetic domain walls in heat-treated Fe₈₅Si₁₂B₆P₄Cu₁ amorphous ribbons. Smooth motion of domain walls was observed for the optimally heat-treated (at 430 °C) nano-crystalline alloy. Pinning of domain walls was observed for higher-temperature-heat-treated (470 °C) ribbons. Both ribbons showed a nanocrystalline structure containing α -Fe crystallites of about 15 nm in size. Electron diffraction patterns indicated that the higher-temperature-heat-treated samples contained boride precipitates, which is considered to cause less smooth domain wall motion.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Soft magnetic materials are used as magnetic cores in a variety of applications such as motors, transformers, inductors, sensors, actuators, power circuits, and electronic communication devices [1,2]. Electrical energy loss, which manifests as heat, is inherent in materials used in these applications. Metallic alloys in amorphous and/or nano-crystalline states exhibit low magnetic core loss (W) [1,2]. In addition to low W, soft magnetic materials are required to have a high saturation magnetic flux density (B_s) for device miniaturization. Unfortunately, there are very few amorphous/ nanocrystalline materials that have at the same time W lower than that of grain oriented steel and B_s close to that of the grain oriented steel. Recently, Fe-rich Fe–Si–B–P–Cu nanocrystalline alloys have been reported to have these necessary characteristics [3–5]. Therefore, these alloys have large application potential in saving electrical energy in various devices.

The Fe–Si–B–P–Cu alloys have a uniform nanocrystalline structure composed of high density α -Fe grains with the size less than 20 nm surrounded by remaining amorphous matrix. A uniform

E-mail address: akase@tagen.tohoku.ac.jp (Z. Akase).

nanocrystalline structure is obtained after an optimum heattreatment of an as-quenched amorphous alloy. Sharma et al. [5] reported that heat-treatment at temperatures lower than the optimum temperature results in a significantly larger volume of remaining amorphous phase, whereas higher temperature heattreatment leads to crystallization of iron-boride phases.

Magnetic properties of nano-crystalline alloys strongly depend on the type of phases (crystalline and amorphous), distribution, and their volume fraction. High density α -Fe nanocrystals are required for strong magnetic exchange coupling, which is necessary to average out the magnetocrystalline anisotropy of α -Fe [1]. A larger separation between α -Fe grains i.e. relatively more volume fraction of amorphous phase, leads to indirect exchange coupling among α -Fe grains (through the amorphous matrix), and affect the magnetic properties. Similarly appearance of a minor amount of iron-boride phase can significantly increase the coercivity (H_c) [6]. In soft magnetic materials coercivity is mainly governed by the motion of domain walls, and their propagation is affected by the presence of inhomogeneities, which can be amorphous/iron boride phases. Therefore, it is important to study motion of domain walls in the newly developed Fe-Si-B-P-Cu alloys heat-treated at different temperatures. The Fe₈₅Si₂B₈P₄Cu₁ alloys were selected because of good magnetic properties $(H_c \sim 6 \text{ A/m} \text{ and } B_s \sim 1.85 \text{ T})$ and an ability to produce asquenched X-ray amorphous ribbons [5]. Motion of magnetic

^{*} Corresponding author at: Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan.

domain walls was studied by using in-situ Lorentz microscopy in a transmission electron microscope (TEM) equipped with a magnetizing system [7–9] in order to clarify the dependence of domain walls motion on microstructure.

2. Materials and methods

The $Fe_{85}Si_2B_8P_4Cu_1$ ribbons (width ~4–6 mm and thickness \sim 20 μ m) were made by high frequency induction melting (in vacuum) and melt-spinning (in air) techniques. Ribbons were heat-treated in an infra-red furnace under Ar-gas flow condition. Heating rate to achieve the required heat-treatment temperature was 400 °C/min. A magnetic flux density (B) versus magnetic field (*H*) loop analyzer was used to measure the magnetic properties. Three samples were selected based on their heat-treatment temperature and magnetic properties: Sample 1 is heat-treated at 330 °C, which is lower than the optimum heat-treatment temperature. Sample 2 is heat-treated under the optimum conditions, i.e., at 430 °C. Sample 3 is heat-treated at a higher temperature (\sim 470 °C) than the optimum temperature. The coercivities (H_c) of these samples were as follows: Sample 1: 21.2 A/m; Sample 2: 6.29 A/m; Sample 3: 259 A/m. The H_c of the as-quenched amorphous ribbon was \sim 17 A/m. The TEM samples were prepared using a IIB-4500-Multibeam focused ion beam (FIB) system. They were cross-sectioned in the direction of the thickness of the ribbons with dimensions of $10 \,\mu\text{m}$ wide, $2-5 \,\mu\text{m}$ long and $0.1 \,\mu\text{m}$ thick. These rectangular samples were attached to a collodion film of TEM mesh-grids by using a micro-manipulator with a glass probe. For conventional TEM observations and Lorentz microscope observations, we used HF-3300S (Hitachi High-Technologies). For in-situ Lorentz microscopy observations with a static or alternating external magnetic fields, we used JEM-3000F (JEOL) equipped with a magnetizing specimen holder, which can apply a magnetic field horizontal to the sample [7–9].

3. Results and discussion

3.1. Microstructures

Fig. 1 shows bright field images (a–c) and selected area electron diffraction patterns (d-f) for Fe₈₅Si₂B₈P₄Cu₁ ribbons: Sample 1 (330 °C heat-treated), Sample 2 (430 °C heat-treated), and Sample 3 (470 °C heat-treated). Sample 1 has randomly oriented α -Fe grains of size \sim 20–40 nm sparsely distributed in the remaining amorphous matrix (Fig. 1a and d). The α -Fe grain size decreases significantly at higher-temperature heat-treatment. Dense and uniform distributions of α -Fe grains with the size of 15 nm are noticeable in the TEM images of Sample 2 and Sample 3 (Fig. 1b and c). Such a large difference in grain sizes is due to changes in the mechanism of crystallization at different heat-treatment temperatures. Grain nucleation density, which is dependent on heat-treatment temperature, governs the grain size. The diffraction patterns of all the heat-treated ribbons (Figs. 1d-f) show Debye-Scherrer rings corresponding to α -Fe nano-crystallites. Additional diffraction spots can be noticed for Sample 3 (Fig. 1f, marked with red circles). These spots can be indexed as 112, 202 and 310 reflections from Fe₂B crystals.

Low H_c (~6 A/m) for Sample 2 (430 °C heat-treated) is due to suppression of magneto-crystalline anisotropy (K_1) of α -Fe grains through magnetic exchange interactions [6]. The necessary requirement for this to happen is that the grain size should be smaller than the ferromagnetic exchange length, which is about

Fig. 1. Bright field images (a–c) and selected area diffraction patterns (d–f) obtained from heat-treated Fe₈₅Si₁₂B₆P₄Cu₁ amorphous-ribbons. The heat-treatment temperatures are 330 °C, 430 °C, and 470 °C. (For interpretation of the references to color in this figure the reader is referred to the web version of this article.)

Download English Version:

https://daneshyari.com/en/article/1799456

Download Persian Version:

https://daneshyari.com/article/1799456

Daneshyari.com