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a b s t r a c t

In this work we investigate magnetic effects in terms of the translational and rotational invariances of
magnetisation. Whilst Landau-type diamagnetism originates from translational invariance, a new
diamagnetism could result from rotational invariance. Translational invariance results in only conven-
tional Landau-type diamagnetism, whereas rotational invariance can induce a paramagnetic suscept-
ibility for localised electrons and also a new kind of diamagnetism that is specific to conducting
electrons. In solids, the moving electron shows a paramagnetic susceptibility but the surrounding
screening of electrons may produce a new diamagnetic response by Lenz's law, resulting in a total
susceptibility that tends to zero. For electricity, similar behaviours are obtained. We also derive the DC-
type negative electric susceptibility via two methods in analogy with Landau diamagnetism.

& 2014 Elsevier B.V. All rights reserved.

Magnetism in modern solid state physics remains the focus of
many theoretical and experimental studies [1]. Magnetic materials
are conventionally classified as paramagnetic, ferromagnetic, anti-
ferromagnetic or diamagnetic [2]; also of importance are the
theoretical models such as the phonon-assisted mechanism pro-
posed by Kim [3,4], and the spin fluctuation scheme [5] for
metallic ferromagnetism. Many scientists have questioned
whether or not a Pauli-type diamagnetism can occur, and also
whether a Landau-type paramagnetism may be possible [3,4]. In
ferromagnetism, ferromagnetic insulators are explained by loca-
lised Heisenberg spins according to Curie–Weiss law and this
theory is well accepted with some consensus among the magnetic
community, and can be applied to metallic ferromagnetism [6]
using localised block spins. In recent years, the Berry phases [7]
related to rotational invariance have been considered important.
In optics and particle physics, rotational anomalies of lights or
particles are categorised as chiral phenomena. For an external
magnetic field, the field is expelled fromwithin the superconduct-
ing material, and external materials with nonzero magnetic fields
placed near the superconducting material levitate away from the
superconductor. This levitation results from a negative magnetic
response known as diamagnetism. It is possible for some materials
to have negative electric response states known as diaelectric
states in analogy with the diamagnetic states found in magnetism.
Outside the diaelectric material the charges may levitate. It is
generally thought that this state, termed supermagnetic, has

already been realised, having been confirmed by indirect evidence.
However, no direct detection of supermagnetism has been
achieved to date; furthermore, the supermagnetism thought to
have been found in conventional experiments may be regarded
not as a diaelectric state at all, but merely as normal electric
phases due to the polarity of the electric charge. The candi-
date materials suitable for realising diaelectric states are likely
to be a kind of unknown meta-material of DC-type, i.e.,
ε ω μ ω‵ = < = <( 0) 0, ( 0) 0, where μ is the magnetic permeability.
The other strong candidate materials that could show diaelectric
behaviours require careful cheques to be made using V and Nb as
examples.

We herein intend to verify conventional diamagnetism and
paramagnetism, and investigate new magnetisms using rigorous
considerations of invariance. We also revisit magnetism from the
perspective of the rotational and translational invariances of
magnetisation. We herein also derive negative electric suscept-
ibility using two methods in an analogy with Landau
diamagnetism.

Let us first consider translational invariance.
The magnetisation M obeys

+ =
→ → →

M r T M r( ) ( ) (1)

where
→
T is the translational vector, and →r is the positional vector.

We also have

⋅ = ⇒ ⊥
→ → → →
k T k T0 (2)

where
→
k is the wavevector.
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Landau-type diamagnetism [2,4] stems from this condition in
the sense that the orbital surface is as important as the Landau's
surface.

In the case of rotational invariance, we have

∇ × ‵ =
→ → →

M r( ) 0 (3)

where ‵
→
M is the magnetic moment.

Using Stokes' theorem, we obtain

∫ ∳∇ × ‵⋅ = ‵⋅
→ → → → →

M dS M dl (4)A

and the susceptibility is given by

χ θ θ~ = ∂
∂

= ∂
∂

M
H

M
H

tan , (5)

where θ is the phase angle between the positional vector and
magnetic field, and H is the magnetic field.

Itinerant electrons are governed by the Lorentz force as follows.

θ θ θ θ= × | | = ∂| |
∂

= | | ∂
∂

+ | |
→ → → →

→

F qv H F qvH
F
H

qvH
H

qvsin cos sin (6)

where q is the charge and v is the electron velocity.
The screening of a moving electron is induced by surrounding

electrons that oppose the Lorentz forces according to Lenz's law to
give θ∂ ∂ <H( / ) 0. In other words, the moving electron shows a
paramagnetic susceptibility (χ > 01 ) but the induced screening of
electrons may produce a diamagnetic response by Lenz's law
(χ < 02 ), resulting in a total susceptibility that tends to zero
(χ χ+ → 01 2 ).

By analogy with image-charge methods, the screening elec-
trons are governed by the imaginary component of the target
electron, on the basis of Maxwell's equations.

We now derive a corrected version of the imaginary part of
Pauli paramagnetism for non-interacting electrons.

In a magnetic field H applied in the positive z direction, the
electron number densities are given by

∫ ∫ε ε μ ε ε ε μ ε= − → −+n d N H f d N H f( ) ( ) ( ) ( ) (7)B B BE

where + −n n( ) represents the number density for up (down) spins,
εN ( ) is the density of states, εf ( ) is the Fermi–Dirac distribution, μB

is the Bohr magneton, and fBE is the Bose–Einstein distribution
corresponding to the imaginary part of f , and the imaginary
argument of the Fermi–Dirac distribution is given by

ε
ε μ

ε μ
ε μ ε μ

π ε μ
π ε μ π ε μ

ε μ
ε

=
+ −

=
−

− + − −

→
− − − −

− − − + − −

=
− −

=

f
k T

i k T i
i k T i i k T i

i k T i
i k T i i k T i

k T
f

( )
1

1 exp( / )
exp( ( /2 ) )

exp( ( /2 ) ) exp( ( /2 ) )
exp{ (( /2) ( /2 ) )}

exp{ (( /2) ( /2 ) )} exp{ (( /2) ( /2 ) )}
1

exp( / ) 1
( )

(8)

B

B

B B

B

B B

B
BE

where the imaginary part is π θ± ± −f ( (( /2) ))for the real part of
θf ( ) with phase angle θ .
The resultant imaginary magnetic susceptibility is then given

by

χ
μ

μ ε ε‵‵ =
− −

≈ ‵+ −n n

H
N

( )
2 ( ( ) ), (9)

B
B F F
2

where εF is the Fermi energy and ε′N ( )F is a 1st derivative about ε,
and is positive in most materials.

In contrast to Landau diamagnetism, a new kind of diamagnet-
ism known as Pauli diamagnetism, for V, Nb with ε′N ( )F o0 may

be expressed as

χ μ ε ε≡ − | ′ |N2 ( ) . (10)Pauli
Diamagnetism

B F F
2

We propose to make corrections to the above Pauli diamag-
netism by imposing a relationship between the thermal activation
(temperature) and the magnetic field-induced excitation (mag-
netic field). In other words, we consider a relationship between
temperature T and magnetic field H in the system of Fermi
electrons.

The average number density of an electron in the absence of H
is given by

∫ ∫

∫ μ

μ

ϵ ϵ = ϵ
+ ϵ − ϵ

= ϵ
+ ϵ ± − ϵ

≡ + ϵ

= + − ± − ϵ

∞ ∞

∞

f d
d

k T

d
H k T

k T k T

k T H k T

( )
1 exp ( / )

1 exp ( / )

ln [1 exp ( / )]

ln [1 exp ( ( )/ )] (11)

F B

B F B eff

B F B

B eff B F B eff

0 0

0

where εf ( ) is the Fermi–Dirac distribution, εN ( ) is the density of
states, β is a positive constant parameter and εF is the Fermi
energy. The total energy of an electron in the presence of H along
the z-axis can be expressed in the form:

β β
μ≡ ±k T k T H

1 1
(12)

B
eff

B B

where T eff defines the effective temperature. We derive a corrected
version of Pauli diamagnetism that incorporates the temperature
dependence into the magnetic field dependence. For a magnetic
field H applied in the positive z direction, from Eq. we obtain

∫
∫

ε ε μ ε

ε ε μ ε

= − |

= + |

βμ

βμ

+ = −

− = +

n d N H f

n d N H f

( ) ( )

( ) ( ) (13)

B BE k T k T H

B BE k T k T H

B eff B B

B eff B B

where + −n n( ) represents the number density for up (down) spins,
εN ( ) is the density of states, εf ( )BE is the Bose–Einstein distribution,

and μB is the Bohr magneton. The Bose–Einstein distribution is
given by

ε

ε ε βμ

ε β ε ε ε
μ

|

=
− + − ±

≈ ∓ −

βμ= ±

′

f

k T H

f f
H

k T

( )

1
1 exp ( / )

( ) ( ) ( )
(14)

BE k T k T H

F B B

BE F BE
B

B

B eff B B

in which we consider the case μ < <H k TB B , and εF is the Fermi
energy.

The resultant magnetic susceptibility is then given by

χ
μ

μ ε ε μ ε
βε

=
− −

= ′ + + ⋅⋅⋅+ −n n

H
N N

k T

( )
2 ( ) 4 ( )

(15)
B

B F F B F
F

B

2 2

We use the electric vortex concept, as introduced for quark
confinement [8]. The effective charge for an electron attached to
an electric flux is termed a composite charge as shown in Fig.1
such that

− ± = ⁎

=

e EA pE A e EA

E A
l

EA

( )

1
(16)

0 0

0 0

where ⁎e is the effective charge and E E A A( ), ( )0 0 are the electric
field and surface in part of the bulk (in an electric cylindrical
vortex), ε is the electric permittivity inside the materials, p is the
number of electric field lines in an electric vortex attached to an
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