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a b s t r a c t

The minimization of exchange interactions and dipolar interactions in 2D and 3D nanoparticles is
obtained from a powerful variational approach of the local spin Hamiltonian and leads to a different set
of equations which correspond to different levels of screening of the long range dipolar interactions.
These equations are shown to introduce topological defects which are analyzed on the basis of
elementary spin clusters. Four basic topological defects are deduced for 2D nanoparticles, as observed
in magnetic samples and simulations and 10 basic topological defects are deduced for 3D nanoparticles.
These singularities induce complex variations of magnetization around them and non-linear properties.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Since the very beginning of magnetic domain observations in
magnetic materials of various natures, sizes and shapes [1], there
has been a strong experimental evidence for intrinsic walls, linear
singularities and topological defects in the magnetic structure of
materials. More specifically magnetic thin films and ultra-thin
films [2] showed labyrinthine and vortex structures as well as
other topological defects. More recently experimental results on
the magnetic structure of nanofilms were helped by theoretical
simulations used to deal with micromagnetism such as OOMMF
method [3], Monte-Carlo computations [4] and Langevin dynamics
[5] and these approaches showed localized topological defects and
their consequences on dynamical properties [6]. 3D magnetic
nanoparticles of interest for catalytic applications and for trans-
port properties like printing or biological applications as guided
vectors were recently shown to also exhibit a complex 3D domain
structure at their external surfaces [7].

There are several difficulties in 3D analyses of magnetic
nanoparticles, since mainly external surfaces are observed without
data on internal structure. Moreover there is a lack in 3D comple-
tely reliable simulations up to now. Recent works explore local
magnetic structures in nickel nanocylinders [8] as well as in
antiferromagnets [9]. So the natural aim of this paper is to
introduce a new theoretical analysis of the magnetic ground state
of 2D and 3D nanoparticles by means of a variational approach and
so to deduce the 3D observable topological defects.

The obvious origin of complex magnetic structures is the long
ranged dipole–dipole interaction competing with local exchange and
anisotropy [10]. Real samples are finite, so all dipolar contributions

such as local demagnetizing field and dynamical matrix elements are
far from being uniformly spread over the sample and the long range
nature of dipolar interactions seriously increases this spreading [11].
Non-uniformity breaks the hopes of a magnetic sample translational
invariance as assumed from [12] and followers about magnetic
structures. As a result, the obvious finiteness of samples induces
localization in the spin wave spectra as observed in numerical
computations [11] and as a later consequence, it induces observed
static topological defects [1] resulting from localized soft modes. So
there is a real need for a theoretical approach of nanoparticle
magnetic structure and especially for 3D nanoparticles. Here we
are looking for a variational treatment from a generalized Landau's
local version of the spin Hamiltonian.

The long ranged dipole–dipole interaction is translated into a
local interaction by means of Taylor expansion of the spin field
introducing spin derivative fields as previously done about 2D
samples [10], with lattice sums or more exactly sample sums with
symmetry properties. This approach explains the occurrence of
non-linear properties [6], which are efficient out of domains, i.e. at
walls and defects as observed [6]. The zero order approximation of
Taylor expansion is linked with the concept of demagnetizing field
while the second order approximation of the spin Hamiltonian
gives the main set of equations on magnetic structures deduced
from minimization. These equations show a higher level of
complexity for 3D samples than for 2D ones. Of course higher
order equations correspond to higher levels of screening of the
long ranged interaction and can also be deduced as in the two-
dimensional case [10].

The search for topological defects in 3D samples requires a local
analysis within a spherical frame, i.e. for instance here a basic
cluster. For 2D samples, just four basic topological defects when
considering neighboring sites only: vortex, two antivortices and
a strongly asymmetric one, while for 3D samples, 10 basic
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topological defects occur. For 2D samples as well as for 3D ones
complex defects involving several basic defects occur also, so there
are many complex topological defects. Harmonic magnetic excita-
tions, i.e. spin waves, are defined in that context of topological
defects [10] and can be observed by magnetic resonance [14].

From the local spin Hamiltonian a Landau like variational
treatment enables us to obtain the basic equations which are
satisfied by topological defects. These topological defects are then
deduced from simple geometrical criteria.

2. The spin Hamiltonians

Here we consider the exchange interaction between spins
located on neighboring states
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It leads to a strictly local interaction in terms of the square of
the gradient of the spin field, a standard result. The anisotropy
interaction is local and so does not require any translation in terms
of local field. The dipolar field induces the well known dipole–
dipole interaction:
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Again using Taylor expansion of the spin field dipolar interac-
tion reads as a local one in terms of all spin derivative fields when
introducing lattice sums, i.e. more exactly sample sums Ip;q;r;i and
Jp;q;r;α;β;i:
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where isotropic and anisotropic sample sums are respectively
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For infinite samples many of these lattice sums would diverge.
Here sample sums remain finite and are often assumed to have a
weak local variation, for the sake of simplicity. In that case, a
continuous calculation by means of 3D integration will be intro-
duced for the estimation of these sums as integrals.

The principle of our variational approach consists of introdu-
cing a local arbitrary small deviation of a spin orientation on site k
of weak amplitude C:

Si ¼ Si;0þCδði�kÞSk;04 n! ð6Þ
Here n! is an arbitrary unit vector, δ ið Þ is the Dirac delta

function and Eq. (6) ensures the spin amplitude conservation.

Since variations for every site are independent, the variation basis
is complete.

3. Basic results

At level 0 of the Taylor expansion of the dipolar interaction,
omitting the spin anisotropy term, the effect of demagnetizing
field only occurs as induced by the anisotropic character of dipolar
interaction. The set of optimization equations reads, within the
assumption of uniform sample sums:
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Here only order of magnitude is considered, omitting tedious
numerical factors. In other words the classical shape effect of the
demagnetizing field is found: for a flat sample in the xy plane,
magnetization is in plane within this continuous model. Of course
the detailed calculation can be achieved in a general 3D case, at
the expanse of complexity according to the sample shape.

At level 2 of the Taylor expansion of the dipolar Hamiltonian,
always considering sample parameters as uniform over the sam-
ple, a set of three equations over the spin field components and
their derivatives is obtained. The first equation of this set reads as
a matrix product:
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Here the coefficients A, B and C are issued from isotropic
sample sums I while coefficients D,E,..., L come from anisotropic
sample sums L, and λ is a free parameter. Two other equations with
similar coefficients are derived according to circular permutations.
These equations complete the set of second order equations.
It must be noticed that while lattice sums depend on lattice
geometry and lattice parameter, sample sums and related coeffi-
cients depend also on sample shape as shown in Eq. (70). Thus Eq.
(8) defines a large class of spin fields submitted to second order
partial derivative equations.

Introducing a common Fourier transform for the spin field with
wavevectorðkx; ky; kzÞ, the set of equations leads to the character-
istic condition on wavevectors:

This set of properties of 3D magnetic structures is quite more
complex than the set obtained for a 2D sample [10] which can be
deduced from the more general 3D case from Eqs. (8) and (9). The
characteristic Eq. (9) of order 6 means the occurrence of static
wavy like deformations in the ground state.

The next point to consider consists of deriving the topological
defects which correspond to Eq. (8), within a spherical frame.
Since these equations are submitted to very large changes

det
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