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a b s t r a c t

Orbital angular momentum (OAM) of graphene electrons in a perpendicular magnetic field is calculated
and corresponding magnetic moment is used to investigate the magnetism of perfect graphene.
Variation in magnetization demonstrates its decrease with carrier-doping, plateaus in a large field,
and de Haas–van Alphen oscillation. Regulation of graphene's magnetism by a parallel electric field is
presented. The OAM originates from atomic-scale electronic motion in graphene lattice, and vector
hopping interaction between carbon atomic orbitals is the building element. A comparison between
OAM of graphene electrons, OAM of Dirac fermions, and total angular momentum of the latter
demonstrates their different roles in graphene's magnetism. Applicability and relation to experiments
of the results are discussed.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

The magnetism of graphene is rather intriguing. It is believed
that carrier-undoped graphene has a very large diamagnetic
susceptibility and the susceptibility decreases rapidly with the
increasing carrier-doping of either electrons or holes [1–3]. The-
oretically, the susceptibility was derived according to quasi-
continuous Landau levels (LLs) of graphene in a weak magnetic
field, and the thermal potential energy constructed from LLs plays
the central role [3,4]. This anomalous susceptibility is interesting
and attempts have been made to interpret its origin [3].

In addition, many factors have been found to contribute to
graphene's magnetism, such as vacancies [5–8], substituting atoms
[8], absorbed atoms [8–10], edge structures and edge states [11–13],
finite size of graphene [14,15], electron–electron interaction [2],
substrates [16], and strain [17]. Magnetism-related properties of
gapped graphene were also studied [18,19]. Although diamagnetism
was observed in experiments, the magnetization was measured for
graphene crystallites with nanometer size [20]. For a new material,
the elimination of uncontrollable disturbances is necessary for both
applications and the revelation of underlying physics, and graphene
is expected to be made more and more perfect. Theoretically, wave
functions of graphene electrons in a perpendicular magnetic field are
obtainable [21,22]. Along with LLs, these wave functions may provide
more insight into graphene's magnetic properties.

In this work, orbital angular momentum (OAM) of graphene
electrons in a perpendicular magnetic field is calculated according to
the electronic wave functions. The corresponding orbital magnetic

moment (OMM) is found paramagnetic for negative LLs and dia-
magnetic for positive LLs. As a result, carrier-undoped graphene
could be paramagnetic and the magnetization decreases with the
increasing carrier-doping of either electrons or holes. For a fixed
magnetic field, the magnetization variationwith the carrier-doping is
obtained as a function of temperature and Fermi energy. It presents
plateaus similar to those in quantum Hall effect as Fermi energy
varies in a large magnetic field. As the magnetic field varies, the
magnetization demonstrates de Haas–van Alphen oscillation. A
parallel electric field can change the electronic states and regulate
graphene's magnetism. The derivation of OAM of graphene electrons
manifests that their OMM originates from their atomic-scale motion
in graphene lattice. The vector hopping interaction of carbon atomic
orbitals constitutes building element of the OAM. Its honeycomb-like
distribution in graphene lattice and its magnitude result in the
unique form of the OAM operator, and its modulation by the two-
component electronic wave function generates the OAM for a specific
state. The OAM of a graphene electron is different from that of the
Dirac fermion, although they are described by the same two-
component wave function. The superposition of degenerate states
may result in diversity of graphene's magnetization. This super-
position, the deep states with energies far below the zero, and the
small size of graphene crystallites may be the origin of experimen-
tally observed diamagnetism.

2. Electronic orbital angular momentum, electronic orbital
magnetism moment, and magnetization variation of graphene

The graphene is taken as xy-plane with x-axis parallel to one
set of C–C bonds. Unit vectors of the axes are denoted by x!, y!,
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and z!. A three-dimensional vector is denoted by r!¼ x x!þy y!

þz z! and its two-dimensional projection in the graphene plane

with z¼ 0 by ρ!¼ x x!þy y!. Two kinds of Dirac points k
!

F ¼
ð2π=3

ffiffiffi
3

p
a0Þð

ffiffiffi
3

p
x!þτ y!Þ are distinguished by τ¼ 71, with a0 the

C–C bond length. A graphene electron is described by a two-
component wave function Ψ ¼ ðψ1 ψ2ÞT which, in an orthogonal

electromagnetic field with scalar potential φð ρ!Þ and vector

potential A
!ð ρ!Þ, is determined by the Dirac-like Hamiltonian

Ĥ ¼ vF s
!U ð� iℏ∇2þe A

!Þ�eφI2; ð1Þ

where vF � 106 ms�1 is the Fermi velocity, ∇2 ¼ x!∂=∂xþ y!∂=∂y,
I2 is the 2� 2 unit matrix, and s!¼sx x

!þτsy y
!with sx;y the first

two Pauli matrixes. Because of this Ĥ, Ψ is regarded as describing a
virtual massless Dirac fermion.

For a graphene electron described by Ψ , its velocity operator
and OAM operator with respect to a point ρ!0 are [23]

^
v!¼ vF s

!
;

^
l
!
e ¼ ð ρ!� ρ!0Þ �me

^
v!; ð2Þ

with me the mass of an electron. Electronic states are usually not

eigen-states of
^
l
!
e . However, for a localized and normalized state

Ψ , the expectation value l
!
e ¼

R
1Ψ þ ^

l
!
eΨd2 ρ! plays the real role,

like the expectation value of ^v! in graphene's quantum Hall effect
[24]. For a graphene electron, the usual relation between the OMM
and the OAM still holds. In fact, the state Ψ has the current density

j
!¼Ψ þ ^v!Ψ [2,23]. Therefore the OMM is [25]

μ!¼ 1
2

Z
1
ð ρ!� ρ!0Þ � ð�e j

!Þd2 ρ!¼ � e
2me

l
!
e : ð3Þ

Graphene's electronic states can be calculated for τ¼ þ1 only,
since OAM is the same for τ¼ 71. Suppose

LB ¼
ffiffiffiffiffiffi
ℏ
eB

r
; εB ¼ vF

ffiffiffiffiffiffiffiffi
ℏeB

p
ð4Þ

respectively denote magnetic length and energy quantum. One
chooses an arbitrary point ðx0; y0Þ. By adopting symmetric poten-
tial gauge A

!¼ ðB=2Þ½�ðy�y0Þ x!þðx�x0Þ y!�, φ¼ 0 and using polar
coordinates x¼ x0þρ cos θ, y¼ y0þρ sin θ one has the eigen-
energies (LLs) and eigen-states of Ĥ

ε¼ 7
ffiffiffiffiffiffi
2n

p
εB; ð5Þ

ψ1 ¼ 7
ffiffi
2
n

q
CLBeiðm�1Þθe�ρ2=4L2Bρjmj�1

� ½nLðnρ; jmj;ρ2=2L2BÞ�ðnρþjmjÞLðnρ�1; jmj;ρ2=2L2BÞ�
ψ2 ¼ iCeimθe�ρ2=4L2BρjmjLðnρ; jmj;ρ2=2L2BÞ

8>>><
>>>:

; ð6Þ

where nρ ¼ 0;1;2;…, m¼ 0; 71; 72;…, n¼ nρþðjmjþmÞ=2¼
0;1;2;…, Lðn;m; xÞ ¼∑n

k ¼ 0ðnþmÞ!½k!ðn�kÞ!ðmþkÞ!��1ð�xÞk is a
generalized Laguerre polynomial with Lð�1;m; xÞ ¼ 0, and the

normalization constant C ¼ L�jmj�1
B

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�jmj�2nρ!=πðnρþjmjÞ!

q
. States

(6) with mZ0 were presented in Ref. [22].
An LL (5) is degenerate since it is independent of m and

ðx0; y0Þ. As a result real electronic states could be superposition
of states (6) with the same n. A possible case can be obtained
according to graphene's electronic distribution. Electronic density
of each state (6) jψ1j2þjψ2j2 roughly occupies a circular area with
radius

ffiffiffi
2

p
LB and center ðx0; y0Þ. For a finite (large) graphene with

an area S, with spin degeneracy and valley degeneracy not
included the number of states N for each LL with a fixed n is that

of the magnetic-flux quantum h=e which has the area h=eB¼ 2πL2B
[26], that is,

N¼ S

2πL2B
: ð7Þ

Since 2πL2B is also the area of a state (6), it is supposed that each
real state is the superposition of states (6) with the same n and
ðx0; y0Þ but different m. For each LL the N centers of states are
regarded as uniformly dispersed in the graphene plane so that the
circular areas all together fully cover the plane. This distribution
lowers the energy of Coulomb interaction between electrons.

The expectation values of the OAM operator and corresponding
OMM for a state (6) are calculated out to be

l
!
e ¼ 7

ffiffiffiffiffiffi
2n

p
mevFLB z!; μ!¼ 8

ffiffiffi
n
2

r
evFLB z!: ð8Þ

Results for the superposed states are also (8), as long as n and
ðx0; y0Þ are fixed. Therefore states (6) with εo0 have paramag-
netic moment and those with ε40 have diamagnetic one. The
OMM (8) is much larger than Bohr magneton μB ¼ ℏe=2me, as is
found in carbon nanotubes [27]. For instance, for n¼ 1 and
B¼ 10 T, one has le � 50ℏ and μ� 50μB. Graphene's magnetism
is thus mainly determined by its electrons’ OMM. As a result,
carrier-undoped graphene could have large para-magnetization,
since at temperature T ¼ 0 K and for Fermi energy εF ¼ 0, states
(6) with εo0 are occupied and those with ε40 are empty.
Nevertheless, graphene's magnetization cannot be calculated by
summing the OMM in Eq. (8), because LLs (5) and wave-functions
(6) may not well represent deep states whose energy is far below
zero. Instead one can calculate the magnetization variation with
carrier-doping. Graphene's magnetization variation can be
explains as follows: When the graphene is increasingly doped
with electrons, more and more states with ε40 are occupied, and
this brings about more and more electrons with diamagnetic
moment; when the graphene is increasingly doped with holes,
more and more states with εo0 are empty, and this brings about
less and less electrons with paramagnetic moment. In both cases,
the magnetization is decreased with the increasing carrier-doping.

Suppose the magnetization for T ¼ 0 K and εF ¼ 0 is M0 z! and

that for T40 K and εFa0 is M z!. With spin degeneracy and
valley degeneracy included, both the occupied nth LL (doped with
electrons) and the empty �nth LL (doped with holes) contribute to

the magnetization by the dia-magnetization �4N
ffiffiffiffiffiffiffiffi
n=2

p
vFeLB z!=S¼

ð�
ffiffiffiffiffiffi
2n

p
vFe= πLBÞ z!. The magnetization variation ΔM z!¼ ðM�M0Þ z!

can be calculated by

ΔM¼ � evF
πLB

∑
þ1

n ¼ 1

ffiffiffiffiffiffi
2n

p
½1� f ð�

ffiffiffiffiffiffi
2n

p
εBÞþ f ð

ffiffiffiffiffiffi
2n

p
εBÞ�; ð9Þ

where f ðεÞ ¼ 1=f1þexp½ðε�εF Þ=kBT �g is the Fermi–Dirac distribution
function with kB the Boltzmann constant. Usually the carrier-doping
involves only LLs with small n, and terms in Eq. (9) with very large n
actually do not contribute to the result.

In general the ΔM � εF curve for fixed B and T resembles a
parabola. For εB;F5kBT , by calculating Eq. (9) as an integral one obtains

ΔM¼ � 2e
hε2B

½3ζð3ÞðkBTÞ3þ2 ln 2� kBTε2F �; ð10Þ

with ζð3Þ ¼∑þ1
k ¼ 1k

�3 � 1:202, indicating jΔMjpT3 for εF ¼ 0. For a
large magnetic field, theΔM� εF curve presents plateaus like those in
quantum Hall effect [28]. Suppose LLs up to n are filled with electrons
or LLs above from �n are filled with holes. In both cases the
corresponding ΔM plateau is

ΔM¼ � evF
πLB

∑
n

k ¼ 1

ffiffiffiffiffiffi
2k

p
: ð11Þ
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