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a b s t r a c t

The internal energies, including transverse and longitudinal parts, of quantum Heisenberg systems for
arbitrary spin S are investigated by the double-time Green's function method. The expressions for
ferromagnetic (FM) and antiferromagnetic (AFM) systems are derived when one-component of
magnetization is considered with the higher order longitudinal correlation functions being carefully
treated. An unexpected result is that around the order–disorder transition points the neighboring spins
in a FM (AFM) system are more likely longitudinally antiparallel (parallel) than parallel (antiparallel) to
each other for Sr3/2 in spite of the FM (AFM) exchange between the spins. This is attributed to the
strong quantum fluctuation of the systems with small S values. We also present the expressions of the
internal energies of FM systems when the three-component of magnetizations are considered.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

The quantum Heisenberg model has been studied enduringly.
The double-time Green's function method [1], being applicable in
the whole temperature range, has been employed to solve the
model over half a century [2–19]. For a long time, the magnetiza-
tion along the z direction was calculated, with the assumption that
the components other than this direction were zero [2–11]. Since
2000, a skill has been developed to calculate all the three
components of the magnetization [12–19]. In calculation of the
magnetizations, the equation of motion (EOM) of the Green's
functions is applied, and the higher-order Green's functions are
usually decoupled to the lower-order ones in terms of the well-
known Tyablikov decoupling [2], also called the random phase
approximation (RPA).

It is generally believed that evaluation of the magnetizations
under the RPA is quite reasonable. However, the internal energies
obtained up to now have not been satisfactory. The internal
energies of antiferromagnetic (AFM) lattices at temperature close
to zero was discussed [3]. A viewpoint was that it was better to go
beyond the RPA in order to achieve satisfactory internal energies
[18]. That is to say, higher-order Green's functions have to be
solved. However, it is very difficult to do so. There has not been
much work [20–26] attempting to solve the higher-order Green's
functions and they were usually limited to the low-dimensional
lattices and the lowest spin quantum number S¼1/2. Even for the
low-dimensional systems, it was difficult to deal with the cases

with higher spin quantum numbers. The only instance of dealing
with the higher S values was confined in finite lattice site systems
[25]. A remarkable progress was the calculation of the internal
energies of ferromagnetic (FM) lattices above the Curie point by
means of the higher-order Green's functions [27]. There was one
common feature in the work presented in Refs. [20–27]: the
higher-order Green's functions were constructed in the cases
where the magnetization was zero.

To sum up, the evaluation of the internal energy of the
Heisenberg systems when the magnetization was not zero by
means of the Green's function method has seldom been there to
see. We believe that under the RPA, it is possible to obtain as good
as possible expressions for the internal energy applicable to any S
value for nonzero magnetization.

The internal energy of a Heisenberg magnetic system mainly
includes two parts, the transverse correlation energy (TCE) and
longitudinal correlation energy (LCE), as defined in Eqs. (3) and (4)
below. The former is easily calculated by means of the well-known
spectral theorem without any further approximation [5,18,28].
Hereafter, when no further approximation is made in giving an
expression of the energy, we say the expression is precise. In this
sense, the expression of the TCE is precise. The LCE, however, can
be dealt with precisely only in the case of S¼1/2 and 1 [18,28,29].
For higher S values, the treatment of this part is troublesome.
At first thought, the following approximation can be taken [5]:

〈Szi S
z
j 〉� 〈Szi 〉〈S

z
j 〉; ia j ð1Þ

where the subscripts label the lattice sites. In previous work, we
also employed this approximation [30]. However, this approxima-
tion is obviously too rough. A good approximation of the long-
itudinal correlation function valid for any S value and temperature
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is still desirable. In this paper, we will present satisfactory expres-
sions of the internal energies for some magnetic systems.

2. One-component magnetization: ferromagnetic systems

The Hamiltonian reads

H¼ �1
2
J∑
i;j
S�
i Sþ

j �1
2
J∑
i;j
Szi S

z
j �Kz∑

i
ðSzi Þ2�bz∑

i
Szi ð2Þ

Throughout this paper, we consider the nearest neighbor exchanges,
and the lower case English letters label lattice sites. In Eq. (2), J40.
The first two terms reflect the transverse and longitudinal correla-
tions between the neighboring magnetic moments, respectively.
At finite temperature, any moment has an instant orientation along
the directions other than the z direction due to its thermomotion,
which is embodied in the transverse correlation function. The third
term is the single-ion anisotropy along the z direction that forces the
spontaneous magnetization along this direction. The fourth term is
the Zeeman energy when an external magnetic field bz along the z
direction is applied. For the sake of convenience, we hereafter denote
Sp¼S(Sþ1).

The internal energy is defined as the statistical average of the
Hamiltonian per site, UIN ¼ 〈H〉=N, where N is the total site number
in the system. Thus, the first two terms of the internal energy are
written as

UTC ¼ �1
2
J∑
j
〈S�

0 Sþ
j 〉 ð3Þ

and

ULC ¼ �1
2
J∑
j
〈Sz0S

z
j 〉 ð4Þ

and are termed as TCE and LCE, respectively. The subscript 0 means
the origin and the summations are taken over its nearest neighbors.

As has been mentioned, the first rough approximation made for
the LCE was Eq. (1). This was plausible when checking its value at two
special temperatures, zero and the Curie point. At T¼0, the internal
energy, with the absence of the external field and anisotropy, is

UINðT ¼ 0Þ ¼ ULCðT ¼ 0Þ ¼ �1
2
Jð0ÞS2 ð5Þ

where we have defined Jð0Þ ¼ c1J with the c1 being the nearest
neighbor number. The quantity J(0) is in fact the case of taking the
wave vector k¼0 in the Fourier component of the exchange para-
meter JðkÞ ¼ J∑

a
eika, where the summation is over the nearest

neighbors of the origin.
Eq. (5) is the rigorous ground-state energy of a FM system. At

the Curie point TC, the spontaneous magnetization becomes zero.
So it seems plausible that ULCðT ¼ TCÞ ¼ 0. However, the analysis is
not reliable. At T¼0, Eq. (5) happens to be correct for FM lattices
because the spontaneous magnetization is along the z direction
and there is no transverse correlation between neighboring spins.
In the case of an AFM system, even at zero temperature, the
neighboring spins are not rigorously antiparallel to each other, and
there is the transverse correlation effect. At this point Eq. (1)
exposes its drawback. At order–disorder transition temperature
such as TC (TN) for FM (AFM) lattices, although the spontaneous
magnetization becomes zero, the LCE may not be zero due to the
existence of the short-range correlation effect [27,31–33]. Hence, a
smart treatment of this energy is required. In the following, we
make use of the Green's function method to derive the expressions
of the energies.

The double-time Green's function is defined as Gijðt; t′Þ ¼
〈〈AiðtÞ;Bjðt′Þ〉〉 where the two operators in the present section are
chosen as A¼ Sþ and BðuÞ ¼ euS

z
S� .

Note that there is a parameter u in the operator B. In applying
the EOM method, the first job is to reckon the commutator of an
operator Sþ

i and the Hamiltonian:

½Sþ
i ;H� ¼ � J∑

j
ðSzi Sþ

j �Sþ
i Szj ÞþKzðSzi Sþ

i þSþ
i Szi ÞþbzS

þ
i ð6Þ

Then the higher order Green's functions are decoupled by the RPA.
Subsequently, the Fourier component of Gijðt; t′Þ, denoted as
gðk;ωÞ, is solved

gðk;ωÞ ¼ ½A;BðuÞ�
ω�ωðkÞ ð7Þ

The dispersion relation is ωðkÞ ¼ ðjJð0ÞjþKzCÞð1�γkCÞ〈Sz〉þbz, where
the notation γk is defined as γkC ¼ JðkÞ=ðjJð0ÞjþKzCÞ. The coefficient C
came from the Anderson–Callen version of the decoupling concerning
the single-ion term [6].

By means of the well-known spectral theorem, we obtain the
evaluation of the correlation function of the two operators:

〈Bmðu; t′ÞAlðtÞ〉¼ 〈½A;BðuÞ�〉∑
k

e� iωðkÞðt� t′Þ

eβωðkÞ �1
e� ikðl�mÞ; ð8Þ

where β¼1/T, the inverse of temperature. We have set Boltzman
constant kB¼1. In Eq. (8), let t ¼ t′ and l¼m, then under the RPA,
the expression of the magnetization can be solved from an
ordinary differential equation of the second order [4,19,28,34,35]:

〈Sz〉¼ ðΦþ1þSÞΦ2Sþ1�ðΦ�SÞðΦþ1Þ2Sþ1

ðΦþ1Þ2Sþ1�Φ2Sþ1 ; ð9Þ

where

Φ¼∑
k

1
eβωðkÞ �1

ð10Þ

From Eqs. (9) and (10), 〈Sz〉 is computed iteratively. Conse-
quently, the following three correlations can be evaluated:

〈ðSzÞ2〉¼ Sp�ð1þ2ΦÞ〈Sz〉; ð11Þ

〈ðSzÞ3〉¼ ½ð1þ2ΦÞ½Sp�3〈ðSzÞ2〉�þð2Sp�1Þ〈Sz〉�=2 ð12Þ
and

〈ðSzÞ4〉¼ S2p� 〈ðSzÞ2〉�2ð1þ2ΦÞ〈ðSzÞ3〉 ð13Þ

From Eq. (8) two formulas can be derived. Note the definition of
the operators A and B. Substituting them into (8), letting t ¼ t′,
taking derivative n times with respective to the parameter u,
letting u¼0 and then summing over the nearest neighbors of site
m, we obtain

J∑
j
〈ðSzmÞnS�

m Sþ
j 〉¼Φa〈½Sþ ; ðSzÞnS� �〉; ð14Þ

where we have defined

Φa ¼ 1
N
∑
k

JðkÞ
eβωðkÞ �1

ð15Þ

Now let us take derivative with respect to time t:

〈Bmðu; t′Þ½AlðtÞ;H�〉¼ 〈½A;BðuÞ�〉∑
k

ωðkÞe� iωðkÞðt� t′Þ

eβωðkÞ �1
e� ikðl�mÞ ð16Þ

Letting t ¼ t′, taking derivative n times with respective to the
parameter u and then letting u¼0, we achieve

〈ðSz0ÞnS�
0 ½Sþ

0 ;H�〉¼Φb〈½Sþ ; ðSzÞnS� �〉; ð17Þ
where

Φb ¼
1
N
∑
k

ωðkÞ
eβωðkÞ �1

ð18Þ

Eqs. (14) and (17) are quite useful for calculation of the LCEs.
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