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a b s t r a c t

The dynamical responses of a ferromagnetic film to a propagating spherical electromagnetic wave
passing through it are studied by Monte Carlo simulation of two dimensional Ising ferromagnet. For a
fixed set of values of the frequency and wavelength of the spherical EM wave, and depending on the
values of amplitude of the EM wave and temperature of the system, three different modes are identified.
The static pinned mode, the localised dynamical breathingmode and extended dynamical spreading mode
are observed. The nonequilibrium dynamical-symmetry-breaking breathing and spreading phase transi-
tions are also observed and the transition temperatures are obtained as functions of the amplitude of the
magnetic field of EM wave. A comprehensive phase diagram is drawn. The boundaries of breathing and
spreading transitions merge eventually at the equilibrium transition temperature for two dimensional
Ising ferromagnet as the value of the amplitude of the magnetic field becomes vanishingly small.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

Ising model is a widely used prototype to study the phase
transition phenomena. Because of its simplicity, even in the case of
nonequilibrium behaviour, this model is being extensively and
successfully used [1]. The hysteresis and dynamical phase transi-
tions are two important responses of kinetic Ising ferromagnet to
an oscillating magnetic field and play an important role in modern
research of nonequilibrium phenomena [1].

Particularly, in this field, the journey was started to study the
responses of kinetic Ising model to an oscillating magnetic field.
The dynamical meanfield equation was solved and dynamic phase
transition was observed [2]. Much effort was devoted to study the
responses by Monte Carlo simulations. The hysteretic responses
and dynamic symmetry breaking nonequilibrium phase transition
were studied extensively. A considerable amount of research was
performed to establish this phase transition as a nonequilibrium
phase transition [3–11]. Recently, the surface and bulk dynamic
transitions were studied in kinetic Ising model and the different
classes of universality were observed [12].

Not only in Ising ferromagnet, the dynamic phase transition was
observed in Ising metamagnet both from meanfield study [13] and
Monte Carlo simulations [14]. The various kinds of nonequilibrium
phase transitions were observed in classical vector spin models.

Recently, the nonequilibrium phase transition was observed [15]
in magnetic nanocomposites by MC simulations.

Apart from the simulational studies of kinetic Ising model,
researchers are also paying attention to observe the dynamical
phase transitions in Blume–Capel model [16], Blume–Emery–
Griffith model [17] and classical vector spin models [18–21].

Experimentally, the dynamic symmetry breaking was also
observed in ultrathin Co film on Cu(001) by surface magneto-
optic Kerr effect [22]. However, it may be mentioned here that all
the studies referred above have a common feature. In those cases,
the magnetic field was sinusoidally oscillating but was uniform
over the space at any particular instant.

Very recently, the nonequilibrium dynamic phase transition
was also observed in Ising ferromagnet swept by linearly polarised
electromagnetic plane wave [23–25]. In these cases, the spatio-
temporal variations of the magnetic field were considered. Here,
the coherent motion of spin clusters was found and phase
boundaries were drawn.

In this present paper, the dynamical responses of two dimen-
sional Ising ferromagnet to a electromagnetic spherical wave are
studied by Monte Carlo simulation. The layout of the paper is as
follows: Section 2 describes the model and the Monte Carlo
simulation scheme, the numerical results are reported in Section
3, the paper ends with concluding remarks in Section 4.

2. Model and simulation

The two dimensional Ising ferromagnet (having uniform nearest
neighbour interaction) in the presence of a propagating spherical
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electromagnetic field wave (having spatio-temporal variation) can
be represented by the following time dependent Hamiltonian:

HðtÞ ¼ � JΣsðx; y; tÞsðx′; y′; tÞ�Σhðx; y; tÞsðx; y; tÞ ð1Þ

The Ising spin variable, sðx; y; tÞ assumes value 71 at lattice site
(x,y) at time t on a square lattice of linear size L. The uniform
ferromagnetic nearest neighbour interaction strength is Jð40Þ.
The first sum represents the Ising spin–spin interaction. The spin–
field interaction resides in the second summation. The hðx; y; tÞ is
the value of the magnetic field (at point (x,y) and at any time t) of
the propagating (radially outward) spherical electromagnetic wave
(originating from the centre (x0; y0) of the lattice). The form of
spherically propagating wave is

hðx; y; tÞ ¼ h0
eið2πf 0t�2πr=λÞ

r
ð2Þ

where r¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx�x0Þ2þðy�y0Þ2

q
. The h0, f 0 ¼ω0=2π and λ represent

the amplitude, frequency and the wavelength respectively of the
propagating spherical electromagnetic field wave which originates
from r¼0 and propagates radially outwards. This form of the
propagating field was obtained from the solution of spherically
symmetric Maxwell's equation representing the electromagnetic
wave. In the present simulation, a L� L square lattice is considered.
The boundary condition, used here, is periodic in both (x and y)
directions. The initial (t¼0) configuration, as the all spins are up
(sðx; y; t ¼ 0Þ ¼ þ1 for all x and y), is taken here. The spins are
updated randomly (a site (x,y) is chosen at random) and spin flip
occurs (at temperature T) according to the Metropolis probability

[26] of single spin flip (W)

Wðs-�sÞ ¼Min½expð�ΔE=kTÞ;1�; ð3Þ
where ΔE is the change in energy due to spin flip and k is the
Boltzmann constant. L2 such random updates of spins defines the
unit time step here and is called Monte Carlo Step per spin (MCSS).
Here, the magnetic field and the temperature are measured in the
units of J and J/k respectively. The dynamical steady state is
reached by heating the system slowly (in the presence of the
propagating field) in small step (δT ¼ 0:05 here) of temperature. It
may be mentioned here that the same dynamical steady state was
observed to be achieved by cooling the system from a high
temperature random configuration. The frequency and wavelength
of the propagating magnetic field were kept fixed ( f¼0.01 and
λ¼15.0) throughout the study. The total length of simulation is
2�105 MCS and first 105 MCS transient data were discarded to
achieve the stable dynamical steady state. Since the frequency of
the propagating field is f¼0.01, the complete cycle of the field
requires 100 MCS. So, in 105 MCS, 103 numbers of cycles of the
propagating field are present. The time averaged data over the full
cycle (100 MCSS) of the propagating field are further averaged
over 1000 cycles. Here, the number of cycles is denoted by nc.

The quantities measured are instantaneous local magnetisation
density in the circle of radius λ/2:mbðtÞ ¼∑sðx; y; tÞ=ðNbÞ, where the
sum is carried over the number of sites (Nb) lying within the circle
of radius λ/2 centered at the centre (x0; y0) of lattice. In the present
study, the lattice size L is taken equal to 101. So, the coordinates of
the centre are (x0¼51, y0¼51) and Nb is the total number of lattice
sites within this circle. The dynamic order parameter of breathing
transition is defined as Qb ¼ ðω=2πÞ∮mbðtÞ dt. The fluctuations in

Fig. 1. The pinned (a) and breathing (b) modes on the lattice. Dots represents up
spins only. (a) h0¼2.5, T¼0.30 and (b) h0¼2.5 and T¼1.45. Here, λ¼ 15:0,
f 0 ¼ω0=2π ¼ 0:01 and t¼4000 MCSS.

Fig. 2. The breathing mode on the lattice. (a) h0¼2.5, f0¼0.01, λ¼15.0, T¼1.25 at
t¼3970 MCSS. (b) h0¼2.5, f0¼0.01, λ¼15.0, T¼1.25 at t¼4000 MCSS.
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