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a b s t r a c t

The Neel and collinear ordered phases of the two-dimensional S¼1 antiferromagnet with next and next
near neighbor exchange interactions and easy axis single ion anisotropy, on the square lattice, are studied
at low temperature using a Modified Spin Wave Theory. We calculate the low-temperature quantities as
a function of the temperature, frustration and anisotropy. We calculate also the phase diagram at T¼0.
We found a disordered phase separating the Neel and collinear phases.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

Magnetic materials with spin S¼1 ions have been of interest
for many years. The two-dimensional 2D Heisenberg antiferro-
magnet K2NiF4 was studied in the 1970s [1]. In the 1980s a number
of weakly coupled linear chain systems were investigated, includ-
ing CsNiCl3 [2], which has a weak axial anisotropy, CsFeBr3 [3],
which has strong planar anisotropy, and the complex materials
NENP Ni(C2H8N2)2NO2(ClO)4 [4] and NENC Ni(C2H8N2)2Ni(CN4)
[5], which have weak and strong planar anisotropy, respectively.

The square lattice antiferromagnet (AF) with next and next
nearest neighbor exchange interactions, the so called J1–J2 model,
has been the subject of intense research, since it can present the
behavior of a frustrated system. The frustration destroys the Neel
order, and an extremely important question is what kind of states
can emerge.

Properties of this model for spin S¼1/2 in two-dimension have
been studied by a variety of methods [6–28], such as the spin wave
theory [10], exact diagonalization (ED) [13,15,21], series expansion
[19,23–26] large-N expansion [27], functional renormalization
group [22], Green's function method [18], and projected entangled
pair states [28]. In all of these methods, it is believed that for η¼
J2/J1r0.4 the ground state of the model is Neel.

However for ηZ0.6 the spins arrange in a collinear phase (CL),
where adjacent spins in one spatial direction are aligned and
parallel, while they are aligned parallel in other spatial directions.

The disordered intermediate phase 0.4oηo0.6 is believed to be a
quantum paramagnetic (QP) without magnetic long-range order.
It is believed that the ground state of this intermediate phase can
be a columnar dimer state, [24,28] a plaquette valence bond solid
order, [15,20,29] or a quantum spin liquid (QLS) [12,30]. The precise
determination of the value of the critical points η1c and η2c, where
the magnetization goes to zero, is also not conclusive. Recently the
exact diagonalization method [18], using results up to N¼40, to
perform a finite-size extrapolation, estimates the transition points
at η1c¼0.35 and η2c¼0.66. Due to the minus signal problem, the
Monte Carlo simulation is not applicable in this frustrated system.
Recently, using the Density Matrix Renormalization Group (DMRG)
method, Jiang et al. [31] found η1c¼0.41 and η2c¼0.62 at zero
temperature.

There are few numerical results for the J1–J2 model with spin
S41/2. An exception is the two-step density-matrix renormaliza-
tion group studied by Moukouri [32,33] and an analysis with spin
wave expansion [34]. It has also been observed that quantum
fluctuations can destabilize the classic ground state, even for spin
S41/2, for large enough values of the frustration. Of particular
relevance to the case with spin 1 are the very recent first-
principles calculations [35] showing that the undoped material
LaOFeAs is well described by the spin 1 J1–J2 model on the square
lattice with J140, J240, and J2/J1E2. Recently, these systems
have received interest motivated by the discovery of Fe-based
superconducting materials [36], where a weakened AF order can
be described by this model with spin 41/2 [37–39].

A generalization of the frustrated J1–J2 model is the J1–J
′
1–J2

model where J1 is the exchange interaction in the x direction, J′1 in
the y direction and J2 is the interaction between second neighbors
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[40–45]. This model is not purely of academic interest since there
are several vanadium phosphate material systems (Pb2VO(PO4))2,
SrZnVO(PO4), BaZnVO(PO4) and BaCdVO(PO4)2) in which extensive
band structure calculations show a spatially anisotropic exchange
interaction along the x and y directions [46]. Bishop [45] studied
this model and found the surprising and novel result that for the
spin 1/2 case there is a quantum triple point below which there is
a second-order phase transition between the Neel and the colli-
near phases.

In the case of spin 1, Bishop et al. [45] found no evidence for an
intermediate phase between the (AF) and (CL) phases, as com-
pared with all previous results for the corresponding spin 1/2 case.
However, they found a quantum tricritical point at J′1/J1E0.66 and
J2/J1E0.35, where a line of second-order phase transitions
between the (AF) and (CL) phases (for J′1/J1r0.66) meets a line
of first-order phase transitions between the same two states (for
J′1/J1Z0.66).

A significant single-ion anisotropy is believed to be present in
materials with spin 1 (as for instance, in solid molecular oxygen
(O2) either in bulk or in monolayers adsorbed on graphite [47]),
and has been included in the analyses of the experimental data. In
this context, various approaches have been used, including mean-
field type theories, [48], [49] spin–wave approximations, [50,51] a
coupled cluster calculation [52], and a bosonic mean-field
approach [53]. At low temperatures the standard spin-wave theory
works satisfactorily for the easy axis model. Recently, using the
Linear Spin Wave Theory, You et al. [54] studied the J1–J2 model
with spin S¼1 and single ion anisotropy. They discussed the
effects of frustration and single-ion anisotropy on the low-
temperature magnetic properties, such as the staggered magneti-
zation and the specific heat. Corrections due to the spin–wave
interactions at higher temperatures (but without competitive
interactions) were treated self-consistently many years ago using
a variational approach [55].

In this paper we study the two-dimensional spin 1 J1–J
′
1–J2

Heisenberg antiferromagnet model with single ion anisotropy D,
using a Modified Spin Wave Theory (MSW) at zero and finite
temperature. One drawback of the spin wave theory is that since it
is based on the assumption of long range order and therefore it
cannot account for the disordered phases.

2. Modified Spin Wave Theory

For small values of the parameter η, we suppose that the
classical ground state of the antiferromagnet is Neel ordered, with
two sublattices “a” and “b”, as it is shown in Fig. 1a. We have two
different kinds of the next-near-neighbor (NN) interaction. The

exchange interaction in the x direction is denoted by J1 and that
along the y direction by J′1. The exchange interaction of the next-
nearest-neighbor (NNN) is denoted by J2. In Fig. 1a, spin up and
down are represented by “þ” and “�” in the z direction. We can
see that, spins on sublattice “a” interact with the spins on
sublattice “b” in the x direction with exchange interaction J1, while
the spins in sublattice “a” interact with spins on sublattice “b” in
the y direction with J1.

Whereas, the next-nearest interaction (NNN) J2 connects only
spins on sublattice “a” with spins on sublattice “a”, and spins on
sublattice “b” with spins on sublattice “b” along the diagonal
direction. We can therefore write the Hamiltonian for this phase as

HðAFÞ ¼ J1 ∑
i;jh i
Sai S

b
j þ J1 ∑

i;jh i
Sai S

b
j þ

J2
2

∑
i;jh ih i

Sai S
a
j þSbi S

b
j

h i
�D∑

i
ðSzi Þ2: ð1Þ

Here D40 is the easy axis anisotropy. The indices on 〈…〉 and 〈〈…〉〉

represent the sum over (NN) and (NNN) sites respectively.
We study the Hamiltonian (1) using the standard Dyson–

Maleev (DM) representation where the spin operators are replaced
by the bosonic operators as

Sþ
i ¼

ffiffiffiffiffiffi
2S

p
1�aþ

i ai
2S

� �
ai

S�
i ¼

ffiffiffiffiffiffi
2S

p
aþ
i

Szi ¼ S�aþ
i ai; ð2Þ

for the “a” sublattice, and by

Sþ
i ¼

ffiffiffiffiffiffi
2S

p
bþ
i 1�bþ

i bi
2S

� �

S�
i ¼

ffiffiffiffiffiffi
2S

p
bi

Szi ¼ �Sþbþ
i bi; ð3Þ

for the “b” sublattice. Here aþ
i (ai) and bþ

i (bi) represent the
creation (annihilation) operator on site i in the “a” and “b”
sublattices respectively. Replacing Eqs. (2) and (3) into Eq.(1),
and using the Fourier transform

ai ¼
ffiffiffiffi
2
N

r
∑
k
eikRi ak; bi ¼

ffiffiffiffi
2
N

r
∑
k
e� ikRi bk ð4Þ

we get

HðAFÞ ¼Hð0Þ þHð2Þ þHð4Þ: ð5Þ
The classical energy (H(0)), and the quadratic Hamiltonian (H(1))
can be written as

Hð0Þ ¼ �z1NJ1S
2 1þλ�z2

z1
ηþD

� �
ð6Þ

Hð2Þ ¼ J1∑
k
A0kðaþ

k akþbþ
k bkÞþC0kðaþ

k bþ
k þakbkÞ ð7Þ

where the coefficients A0k and C0k are given by

A0k ¼ z1S½1þλ�þz2Sη½γð2Þk �1�þSD

C0k ¼ z1Sγ
ð1Þ
k ð8Þ

With

D¼ D
J1
; λ¼ J}1

J1
; η¼ J2

J1
; z1 ¼ 2 and z2 ¼ 4:

where we have defined the structure factors for the first and
second neighbors as

γð1Þk ¼ cos ðkxÞþλ cos ðkyÞγð2Þk ¼ cos ðkxÞ cos ðkyÞ ð9Þ
The quadratic terms in H(AF) are given by

Hð4Þ ¼ � J1 ∑
k1 ;k2 ;k3

fz1½γð1Þk1
aþ
k2 þk3 �k1

ak2ak3bk1

Fig. 1. AF and CL ordered phases of the square lattice. (a) In the AF phase all
a-sublattice spins are in the direction “up” while in the b-sublattice spins point in
the opposite direction “down”. (b) For the CL phase there are two interpenetrating
Neel states.
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