
Magnetic properties of a long, thin-walled ferromagnetic nanotube

Chen Sun a,n, Valery L. Pokrovsky a,b

a Department of Physics & Astronomy, Texas A&M University, College Station, TX 77843-4242, USA
b Landau Institute for Theoretical Physics, Chernogolovka, Moscow District, 142432 Russia

a r t i c l e i n f o

Article history:
Received 5 October 2013
Available online 12 December 2013

Keywords:
Magnetic property
Nanotube
Domain wall
Hysteresis
Stray field

a b s t r a c t

We consider magnetic properties of a long, thin-walled ferromagnetic nanotube. We assume that the
tube consists of isotropic homogeneous magnet whose spins interact via the exchange energy, the
dipole–dipole interaction energy, and also interact with an external field via Zeeman energy. Possible
stable states are the parallel state with the magnetization along the axis of the tube, and the vortex state
with the magnetization along azimuthal direction. For a given material, which of them has lower energy
depends on the value γ ¼ R2d=ðLλ2x Þ, where R is the radius of the tube, d is its thickness, L is its length and
λx is an intrinsic scale of length characterizing the ratio of exchange and dipolar interaction. At γo1, the
parallel state wins, otherwise the vortex state is stable. A domain wall in the middle of the tube is always
energy unfavorable, but it can exist as a metastable structure. Near the ends of a tube magnetized parallel
to the axis a half-domain structure transforming gradually the parallel magnetization to a vortex just at
the edge of the tube is energy favorable. We also consider the equilibrium magnetization textures in an
external magnetic field either parallel or perpendicular to the tube. Finally, magnetic field produced by a
nanotube and an array of tubes is analyzed.

Published by Elsevier B.V.

1. Introduction

Magnetic nanomaterials play an important role in applications
as elements of memory and magnetic sensors and switches as it
was demonstrated by Nobel prize 2007 to Fert and Grünberg
for their invention of antiferromagnetic spin valve. The tasks of
further miniaturization of magnetic devices and creation of con-
figurations providing a controllable magnetic field are extremely
important for nanophysics and technology. Experimenters and
technologists have already created nanomagnets in different
shapes – disks [1], rings [2], wires [3], etc. Among these new
nanomaterials the nanotubes, as compared to solid wires, have
inner voids that reduce the density of materials and make them
easier to float in solutions, a desirable property in biotechnology
[4]. The inner hollow itself can be used for capturing large
biomolecules [5]. Besides, as magnetic materials, they are free of
vortex cores, which make the vortex state more stable than that of
nanowires. This makes nanotubes more suitable as candidates for
elements of memory for computers and as a tool for creation of
superconductors with high critical fields. Several methods have
been used to synthesize nanotubes: electrodeposition [6,7], atomic
layer deposition [8], hydrogen reduction [9]. Ferromagnetic mate-
rials used for formation of nanotubes include Ni, [8], Co [6,8], FePt
[9], and Fe3O4 [9].

Together with the experimental progress, theoretical calcula-
tions and numerical simulations for nanotubes were performed
extensively, dealing with the stable states [4,10], switching behavior
[11], hysteresis loop [4,12] and properties of domain walls (both
static [11] or dynamic [13]). In Ref. [10] the authors calculated
numerically and partly analytically energy of the parallel state and
the vortex state as a function of the dimensions of the tube and
material constants. Phase diagrams were drawn in terms of linear
dimensions of the tube. In Ref. [4] the authors have shown that
the parallel magnetization turns into a vortex-like one at the edge
of the tube.

The purpose of our work is to give an analytical description
of the magnetic tube (MT) properties employing small parameters
characterizing their geometry: the ratios d=R and R=L. In the
experimentally realized MT the first ratio was in the range
of 10�3 and the second one varied between 10�2 and 10�1.
The analytical approach allows us to construct the complete phase
diagram of the MT in the space of geometric parameters and
external magnetic field. We establish analytical criteria for the
appearance and disappearance of different topological magnetic
configurations, topological defects and field-induced magnetic
textures. We also calculate the magnetic field produced by
the tubes.

2. The model

We take into account the magnetic interactions of two kinds:
the exchange interaction and the dipolar interaction. The total
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energy of a MT is

E¼ EexchþEdip

¼ � J ∑
〈x;x0〉

Sx � Sx0 þμ0

4π
ðgμBÞ2 ∑

x;x0 ;xax0

Sx � Sx0 �3ðSx � r̂ÞðSx0 � r̂Þ
r3

: ð1Þ

Here Sx is the spin vector at position x, J is the exchange constant,
r̂ is the unit vector from position x to x0, 〈x; x0〉 means summation
over all nearest pairs, and r¼ jrj ¼ jx�x0j [14]. Further we use the
International System of units. Another often considered contribu-
tion to the total energy, the crystal anisotropy, is not included here.
This is appropriate when the material is a polycrystal with large
number of randomly orientated grains like permalloy. Experimen-
ters [6] indicate that the size of a single-crystal grain in their
nanotubes is about 1 nm. We do not know how strong is the
exchange interaction between the grains. In our calculations we
assume that it is the same as in the bulk single crystal.

We adopt an approximation of classical continuous field mðxÞ
for the magnetic order parameter with the constraint m2ðxÞ ¼ 1.
The magnetization at the point x of the space is equal to M0mðxÞ.
The saturation magnetization M0 is assumed to be dependent on
temperature, but independent of the point x of the space. In this
approximation [15] the exchange energy reads as follows:

Eexch ¼ A
Z

d3xð∇mðxÞÞ2; ð2Þ

where A¼ ð1=6ÞJns2Za2, n is the number of magnetic atoms per unit
volume, s is the magnitude of their spin, ð∇mðxÞÞ2 ¼ ð∇mxðxÞÞ2þ
ð∇myðxÞÞ2þð∇mzðxÞÞ2, Z is the coordination number, and a is the
distance between two nearest atoms.

There are several equivalent expressions for the dipolar energy:

Edip ¼
1
2
μ0

4π
M2

0

Z
d3x d3x0

mðxÞ �mðx0Þ�3ðmðxÞ � r̂Þðmðx0Þ � r̂Þ
r3

; ð3aÞ

Edip ¼
1
2
μ0

4π
M2

0

Z
d3x d3x0ðmðxÞ � ∇xÞðmðx0Þ � ∇x0 Þ

1
r
; ð3bÞ

Edip ¼
1
2
μ0

4π
M2

0

Z
dA dA0sMðxÞsMðx0Þ

r
þ2

Z
dA d3x0

sMðxÞρMðx0Þ
r

�

þ
Z

d3x d3x0
ρMðxÞρMðx0Þ

r

�
: ð3cÞ

The integration denoted by
R
dA;

R
dA0 proceeds over the surfaces

of the magnet, the integration denoted as
R
d3x goes over its

volume. The value sMðxÞ ¼mðxÞ � n is the “surface magnetic charge
density” and ρMðxÞ ¼ �∇x �mðxÞ is the “volume magnetic charge
density”. Eq. (3c) is a form analogous to the energy of electric
charges interacting via Coulomb forces. This analogy allows us to
use results well-known in electrostatics. An important consequence
of this analogy is that the dipolar energy is non-negative, since the
electrostatic energy is equal to the integral of the square of the
electric field. Eq. (3c) provides a clear electrostatic visualization of
the dipolar interaction. Eq. (3b) may occur more convenient for
specific calculations. A system of magnetic charges is always neutral.

3. Stable states

We consider a cylindrical tube located between z¼ �L=2 and
z¼ L=2, as shown in Fig. 1, with the radius R, thickness d, and
length L. We assume d5R5L. This research was initially stimu-
lated by a new material fabricated experimentally by Dr. Wenhao
Wu and his group at Texas A&M University: an array of nickel
nanotubes in alumina with dimensions approximately R¼150 nm,
d¼30 nm and L¼ 60 μm. For these nanotubes the condition R5L
is well satisfied, while the condition d5R is relatively not so well
satisfied. Besides, R25dL is also well satisfied. In earlier experi-
ments [1–9] all three strong inequalities were satisfied.

Natural candidates to the state with the lowest energy are
the most symmetric magnetic configurations: the parallel state:
mðxÞ ¼ ẑ , the vortex state:mðxÞ ¼ ϕ̂, and the radial state:mðxÞ ¼ ρ̂.
We denote azimuthal angle as ϕ; the symbol ϕ̂ denotes the unit
vector in azimuthal direction. Each of these states is two-fold
degenerate due to time reversal invariance. We also consider two
other less symmetric states: the transverse state: mðxÞ ¼ x̂, and
the so-called onion state. According to Ref. [18], the onion state
(see Fig. 2) becomes stable in ferromagnetic rings in some range of
parameters. Here we consider its analogue for a tube. These two
kinds of states occur to be stable magnetic configuration in the
transverse magnetic field.

In the parallel state, ∇mðxÞ ¼ 0, ρMðxÞ ¼ 0, sMðxÞ ¼ 71 for z¼
7L=2, and sMðxÞ ¼ 0 elsewhere. The exchange energy is zero. The
dipolar energy consists of three parts: the self-energies of the two
edges and the energy of interaction between. Since R5L, the latter
term is much smaller than the former two and further we neglect
it. The distance r between two points with cylindrical coordinates
ðρ;ϕ; zÞ and ðρ0;ϕ0

; z0Þ belonging to a MT satisfying the inequality

d5R reads as follows: r�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðρ�ρ0Þ2þ2R2½1� cos ðϕ�ϕ0Þ�þðz�z0Þ2

q
.

Each self-energy term after integration over ϕ and ϕ0 is reduced
to an integral of the complete elliptic integral of the first kind K(k)

where k¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ρρ0=ðρþρ0Þ2

q
. The condition d5R allows us to use

the approximation KðkÞ � 2 log 2�1
2log ð1�k2Þ since k is close to 1.

In this approximation the integration over ρ and ρ0 is straightfor-
ward leading to the result for the self-energy of each edge:

EðedgeÞ ¼ 1
2μ0M

2
0Rd

2ðlog 8R=dþ3
2Þ. Thus, in the limit of long thin

MT the total energy of the parallel state is EP ¼ μ0M
2
0Rd

2

ðlog 8R=dþ3
2Þ. It does not depend on the tube length L.

Different magnetic configurations and results of similar calcu-
lations of exchange and dipolar energy for them are summarized
in Table 1.

While other configurations are trivial, some comments on the
onion configuration are necessary. We seek for a variational
distribution of magnetization that satisfies following require-
ments: magnetization must be parallel to magnetic field (in the
direction x̂) at ϕ¼ 0; 7π=2;π and it does not depend on the
coordinate ρ in a narrow ring. A simplest vector field satisfying
these requirements has a form mðϕÞ ¼ x̂ cos θðϕÞþ ŷ sin θðϕÞ

Fig. 1. Geometry of a tube, with two edges located at z¼ L=2 and z¼ �L=2.
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