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a b s t r a c t

We study the model of a biaxial single ferromagnetic spin Hamiltonian with an external magnetic field
applied along the medium axis. The phase transition of the escape rate is investigated. Two different but
equivalent methods are implemented. Firstly, we derive the semi-classical description of the model
which yields a potential and a coordinate dependent mass. Secondly, we employ the method of spin-
particle mapping which yields a similar potential to that of semi-classical description but with a constant
mass. The exact instanton trajectory and its corresponding action, which have not been reported in any
literature is being derived. Also, the analytical expressions for the first- and second-order crossover
temperatures at the phase boundary are derived. We show that the boundary between the first-and the
second-order phase transitions is greatly influenced by the magnetic field.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, the study of single ferromagnetic spin systems
has been of considerable interest to condensed matter physicists.
These systems have been pointed out [1,3] to be a good candidate
for investigating first- and second-order phase transitions of the
quantum-classical escape rate. The quantum-classical escape rate
transition takes place in the presence of a potential barrier. At very
low temperature (close to zero), transitions occur by quantum
tunnelling through the barrier and the rate is governed by
Γ � e�B, where B is the instanton (imaginary time solution of
the classical equation of motion) action. At high temperatures, the
particle has the possibility of hopping over the barrier (classical
thermal activation), in this case transition is governed by
Γ � e�ΔV=T , where ΔV is the energy barrier. At the critical point
when these two transition rates are equal, there exists a crossover

temperature (first-order transition) T ð1Þ
0 from a quantum to a

thermal regime, it is estimated as T ð1Þ
0 ¼ΔV=B. In principle these

transitions are greatly influenced by the anisotropy constants and
the external magnetic fields. The second-order phase transition
occurs for particles in a cubic or quartic parabolic potential, it takes

place at the temperature T ð2Þ
0 , below T ð2Þ

0 one has the phenomenon

of thermally assisted tunnelling and above T ð2Þ
0 transition occurs

due to thermal activation to the top of the potential barrier [1,3].
The order of these transitions can also be determined from the

period of oscillation τðEÞ near the bottom of the inverted potential.
Monotonically increasing τðEÞ with the amplitude of oscillation
gives a second-order transition while nonmonotonic behaviour of
τðEÞ (that is a minimum in the τðEÞ vs E curve, with E being the
energy of the particle) gives a first-order transition [1].

The model of a uniaxial single ferromagnetic spin with a
transverse magnetic field, which is believed to describe the
molecular magnet MnAc12 was considered by Garanin and Chud-

novsky [1], the Hamiltonian is of the form Ĥ ¼ �DŜ2
z �hxŜx, using

the spin-particle mapping version of this Hamiltonian [5–7], they
showed that the transition from the thermal to the quantum
regime is of the first-order in the regime hxosD=2 and of the
second-order in the regime sD=2ohxo2sD. For other single-
molecule magnets such as Fe8, a biaxial ferromagnetic spin model
is a good approximation. In this case, Lee et al. [13] considered the

model Ĥ ¼ KðŜ2
z þλŜ2

y Þ�2μBhyŜy, using spin coherent state path
integral, they obtained a potential and a coordinate dependent
mass fromwhich they showed that the boundary between the first
and the second-order transition set in at λ¼0.5 for hy¼0 while the
order of the transitions is greatly influenced by the magnetic field
and the anisotropy constants for hya0. Zhang et al. [14] studied

the model Ĥ ¼ K1Ŝ
2
z þK2Ŝ

2
y using spin-particle mapping and

periodic instanton method. The phase boundary between the first-
and the second-order transitions was shown to occur at K2 ¼ 0:5K1.
The model with z-easy axis in an applied field has also been studied
by numerical and perturbative methods [2]. In this paper, we study
a biaxial spin system with an external magnetic field applied along
the medium axis using spin-coherent state path integral and the

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/jmmm

Journal of Magnetism and Magnetic Materials

0304-8853/$ - see front matter & 2014 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.jmmm.2014.01.065

E-mail addresses: solomon.akaraka.owerre@umontreal.ca (S.A. Owerre),
paranj@lps.umontreal.ca (M.B. Paranjape).

Journal of Magnetism and Magnetic Materials 358-359 (2014) 93–97

www.sciencedirect.com/science/journal/03048853
www.elsevier.com/locate/jmmm
http://dx.doi.org/10.1016/j.jmmm.2014.01.065
http://dx.doi.org/10.1016/j.jmmm.2014.01.065
http://dx.doi.org/10.1016/j.jmmm.2014.01.065
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmmm.2014.01.065&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmmm.2014.01.065&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmmm.2014.01.065&domain=pdf
mailto:solomon.akaraka.owerre@umontreal.ca
mailto:paranj@lps.umontreal.ca
http://dx.doi.org/10.1016/j.jmmm.2014.01.065


formalism of spin-particle mapping. Unlike other models with an
external magnetic field [4,12,14], the spin-particle mapping yields a
simplified potential and a constant mass which allows us to solve
for the exact instanton trajectory and its corresponding action in the
presence of a magnetic field. We also present the analytical results
of the crossover temperatures for the first- and the second-order
transitions at the phase boundary.

2. Spin model and spin coherent state path integral

Consider the Hamiltonian of a biaxial ferromagnetic spin
(single-molecule magnet) in an external magnetic field

Ĥ ¼DŜ2
z þEŜ2

x �hxŜx ð1Þ

where D≫E40, and Si; i¼ x; y; z, is the components of the spin.
This model possesses an easy XOY plane with an easy-axis along
the y-direction and an external magnetic field along the x-axis.
At zero magnetic field, there are two classical degenerate ground
states corresponding to the minima of the energy located at 7y,
these ground states remain degenerate for hxa0 in the easy
XY plane. The semi-classical form of the quantum Hamiltonian
can be derived using spin coherent state path integral. In the
coordinate dependent form, spin-coherent-state is defined by
[15,16]

jn̂〉¼ cos
1
2
θ

� �2s

exp tan
1
2
θ

� �
eiϕŜ �

� �
Js; s〉 ð2Þ

where n̂ ¼ sð sin θ cos ϕ; sin θ sinϕ; cos θÞ is the unit vector
parametrizing the spin on a two-sphere S2. The overlap between
two coherent states is found to be

〈n̂ 0jn̂〉¼ cos
1
2
θ cos

1
2
θ0 þ sin

1
2
θ sin

1
2
θ0e� iΔϕ

� �2s
ð3Þ

where Δϕ¼ϕ0 �ϕ. The expectation value of the spin operator in
the large s limit is approximated as 〈n̂ 0jŜ jn̂〉� s½n̂þOð ffiffi

s
p Þ�〈n̂ 0jn̂〉.

For an infinitesimal separated angle, Δθ¼ θ0 �θ, Eq. (3) reduces to

〈n̂ 0jn̂〉� 1� isΔϕð1� cos θÞ: ð4Þ
These states satisfy the overcompleteness relation (resolution

of identity)

N
Z

dϕ dð cos θÞjn̂〉〈n̂j ¼ Î : ð5Þ

Using these equations, the transition amplitude is easily obtained
as

〈n̂f je�βĤ jn̂ i〉¼
Z

DϕDð cos θÞe� S ð6Þ

The Euclidean action ðt-� iτÞ is given by S¼ R β=2
�β=2 dτ L, with

L¼ is _ϕð1� cos θÞþVðθ;ϕÞ ð7Þ

Vðθ;ϕÞ ¼Ds2 cos 2 θþEs2 sin 2 θ cos 2 ϕ�shx sin θ cos ϕ ð8Þ
These two equations (7) and (8) describe the semi-classical

dynamics of the spin on S2. Two degenerate minima exist for
hxohc ¼ 2Es, which are located at θ¼ π=2 : ϕ¼ 2πn7arccos αx,
where αx ¼ hx=hc , nAZ, and the maximum is at θ¼ π=2: ϕ¼ nπ
with the height of the barrier (n¼0) given by

ΔV ¼ Es2ð1�αxÞ2 ð9Þ
Taking into consideration the fact that D≫E, the deviation away
from the easy plane is very small, thus one can expand θ¼ π=2�η,
where η≪1. Integration over the fluctuation η in Eq. (6) yields an

effective theory described by

Leff ¼ is _ϕþ1
2mðϕÞ _ϕ2þVðϕÞ ð10Þ

where

VðϕÞ ¼ Es2ð cos ϕ�αxÞ2 ð11Þ
and

mðϕÞ ¼ 1
2Dð1�κ cos 2 ϕþ2αxκ cos ϕÞ ð12Þ

with κ ¼ E=D. An additional constant of the form Es2α2
x has been

added to the potential for convenience. The first term in the
effective Lagrangian is a total derivative which does not contribute
to the classical equation of motion, however, it has a significant
effect in the quantum transition amplitude, producing a quantum
phase interference in spin systems [10,11]. The two classical
degenerate minima which correspond to ϕ¼ 2πn7arccos αx are
separated by a small barrier at ϕ¼0 and a large barrier at ϕ¼ π.
The phase transition of the escape rate of this model can be
investigated using the potential Eq. (11) and the mass Eq. (12) [13],
in this paper, however, we will study this transition via the
method of mapping a spin system onto a quantum mechanical
particle in a potential field. A classical trajectory (instanton) exists
for zero magnetic field, in this case the classical equation of
motion

mðϕÞ €ϕþ1
2
mðϕÞ0 _ϕ ¼ dV

dϕ
ð13Þ

integrates to

sin ϕ ¼ 7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1�κÞ

p
tanhðωτÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�κ tanh2ðωτÞ
q ð14Þ

where ω¼ 2s
ffiffiffiffiffiffiffiEDp

and the upper and lower signs are for instanton
and anti-instanton respectively. The corresponding action for this
trajectory yields [10,17] S0 ¼ B7 isπ

B¼ s ln
1þ ffiffiffi

κ
p

1� ffiffiffi
κ

p
� �

ð15Þ

For small anisotropy parameters, κ≪1, the coordinate dependent
mass can be approximated as m� 1=2D, the approximate instan-
ton trajectory in this limit yields

sin ϕ ¼ 7
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�αx

1þαx

r
tanhðωτÞ

1þ1�αx

1þαx
tanh2ðωτÞ

� � ð16Þ

where ω¼ s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EDð1�α2

x Þ
p

and the corresponding action is

B¼ 2s
ffiffiffi
κ

p ½
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�α2

x

q
7αx arcsinð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�α2

x

q
Þ� ð17Þ

The upper and the lower sign in the action correspond to the large
and small barriers respectively while that in the trajectory is for
instanton and anti-instanton. At zero magnetic field, the instanton
interpolates between the classical degenerate minima ϕ ¼ 7π=2
at τ¼ 71. For coordinate dependent mass the classical trajectory
can be integrated in terms of the Jacobi elliptic functions. This
solution will be presented in the next section using a simpler
method.

3. Particle mapping

In this section, we will consider the formalism of mapping a
spin system to a quantum-mechanical particle in a potential field
[5]. In this formalism one introduces a non-normalized spin
coherent state, the action of the spin operators on this state yields
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