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a b s t r a c t

In the current study, sway of nanofluid on peristaltic transport of a hyperbolic tangent fluid model in the
incidence of tending magnetic field has been argued. The governing equations of a nanofluid are first
modeled and then simplified under lubrication approach. The coupled nonlinear equations of temperature
and nano particle volume fraction are solved analytically using a homotopy perturbation technique. The
analytical solution of the stream function and pressure gradient are carried out using perturbation technique.
The graphical results of the problem under discussion are also being brought under consideration to see the
behavior of various physical parameters.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Peristaltic transports are a vigorous research area because of
their spacious range applications in physiology and industry. Such
flows occurs in urine transport from kidney to bladder, swallowing
food through the esophagus, mixing of food and chyme movement
in the intestine, circulation of blood in small blood vessels and
blood pumps in heart lung machines. To recognize peristaltic
action numerous theoretical and experimental studies have been
accomplished [1–10].

In recent years, the study of MHD flow problems has achieved
significant interest because of its wide-ranging engineering and
medical applications [11–14]. An effect of inclined magnetic field
on magneto fluid flow through porous medium between two
inclined wavy porous plates was explored in [15]. Recently, Nadeem
and Akram [16] have discussed the inclined magnetic field in viscous
peristaltic phenomena in presence of heat and mass transfer, where
an exact solution of reduced equations has been carried out. The
study of nano fluids is another important area which has recently
attracted the attention of many researchers. Since the pioneering
work done by Choi [17], various aspects of nanofluid have been
discussed. Masuda et al. [18] have examined that the effective
thermal conductivity of nano fluids is expected to enhance the heat
transfer as compared to conventional heat transfer. Some recent

studies of nano fluid due to stretching sheet and peristaltic motion
are given in Refs. [19–24].

In this paper we have discussed the influence of nanofluid on
peristaltic transport of a hyperbolic tangent fluid model under the
effects of inclined magnetic field. The paper is arranged as: The
mathematical formulation of the present problem is given in
Section 2. In Section 3, the analytical solution of the proposed
problem is computed with the help of homotopy perturbation and
regular perturbation technique. The graphical results of the pre-
sent problem are defined in Section 4.

2. Mathematical formulation

We consider the peristaltic transport of an incompressible non-
Newtonian fluid (hyperbolic tangent model) in a two dimensional
channel of width d1þd2, under the effects of apt magnetic field.
The channel asymmetry is produced due to different amplitudes
and phases of the peristaltic waves. Heat transfer along with nano
particle phenomena has been taken into description. The lower
wall of the channel is sustained at temperature T1 and nano
particle volume fraction C1 while the upper wall has temperature
T0 and nano particle volume fraction C0

The geometry of the wall surface is defined as

Y ¼H1 ¼ d1þa1 cos
2π
λ

ðX�ctÞ
� �

; Y ¼H2 ¼ �d2�b1 cos
2π
λ

ðX�ctÞþϕ
� �

;

ð1Þ
where a1 and b1 are the amplitudes of the waves, λ is the wave
length, d1þd2 is the width of the channel, c is the velocity of
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propagation, t is the time and X is the direction of wave propaga-
tion, the phase difference ϕ varies in the range 0rϕrπ; ϕ¼ 0
corresponds to symmetric channel with waves out of phase and
ϕ¼ π the waves are in phase, and further a1; b1; d1; d2 and ϕ
satisfies the condition

a21þb21þ2a1b1 cos ϕr ðd1þd2Þ2:
The governing equations for an incompressible nanofluid under

the effect of inclined magnetic field are given by [16,22]

∂U
∂X

þ∂V
∂Y

¼ 0; ð2Þ

ρf
∂U
∂t

þU
∂U
∂X

þV
∂U
∂Y

� �
¼ � ∂P

∂X
þ ∂
∂X

ðSXXÞþ
∂
∂Y

ðSXY Þ

�sB2
0 cos ΘðU cos Θ�V sin ΘÞ

þρgαðT�T0ÞþρgαðC�C0Þ; ð3Þ

ρf
∂V
∂t

þU
∂V
∂X

þV
∂V
∂Y

� �
¼ �∂P

∂Y
þ ∂
∂X

ðSYXÞþ
∂
∂Y

ðSYY Þ

þsB2
0 sin ΘðU cos Θ�V sin ΘÞ; ð4Þ

∂T
∂t

þU
∂T
∂X

þV
∂T
∂Y

� �
¼ α

∂2T
∂X2 þ∂2T

∂Y2

� �
þτ DB

∂C
∂X

∂T
∂X

þ∂C
∂Y

∂T
∂Y

� ��
DT

T0

� �

� ∂T
∂X

� �2

þ ∂T
∂Y

� �2
" #)

; ð5Þ

∂C
∂t

þU
∂C
∂X

þV
∂C
∂Y

� �
¼DB

∂2C
∂X2 þ∂2C

∂Y2

� �
þ DT

T0

� �
∂2T
∂X2 þ∂2T

∂Y2

� �
; ð6Þ

where U, V are the velocities in X and Y directions in fixed frame, ρf
is density of fluid base, P is the pressure, ν is the kinematic viscosity,
is the temperature, DB is the Brownian diffusion coefficient, DT is the
thermophoretic diffusion coefficient, τ¼ ððρcÞp=ðρcÞf Þ is the ratio of
the effective heat capacity of the nanoparticle material and heat
capacity of the fluid with ρ being the density, c is the volumetric
volume expansion coefficient and ρp is the density of the particles.

The constitutive equation for hyperbolic tangent fluid is given
by [7]

S¼ �½½η1þðη0þη1Þ tan hðΓ _γÞn� _γ�; ð7Þ
in which S is the extra stress tensor, η1 is the infinite shear rate
viscosity, η0 is the zero shear rate viscosity, Γ is the time constant,
n is the power law index and _γ is defined as

_γ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
∑
i
∑
j
_γij _γji ¼

ffiffiffiffiffiffiffiffiffi
1
2
Π

r
;

vuut ð8Þ

where

Π ¼ tracðgradVþðgradVÞT Þ2

here Π is the second invariant strain tensor. We consider the
constitution Eq. (7), the case for which η1 ¼ 0 and Γ _γo1: The
component of extra stress tensor therefore, can be written as

S¼ �η0½ðΓ _γÞn� _γ ¼ �η0½ð1þΓ _γ�1Þn� _γ ¼ �η0½1þnðΓ _γ�1Þ� _γ: ð9Þ
The coordinate frames are related by the following transformation

x¼ X�ct; y¼ Y ;u¼ U�c; v¼ V ; and pðxÞ ¼ PðX; tÞ: ð10Þ
Defining the following non-dimensional quantities

x¼ x
λ
; y¼ y

d1
; u¼ u

c
; v¼ v

c
; δ¼ d1

λ
; d¼ d2

d1
; p¼ d21p

η0cλ
; t ¼ ct

λ
; h1 ¼

H1

d1
;

h2 ¼
H2

d2
; a¼ a1

d1
; b¼ b1

d1
; Re ¼

cd1
v

; Ψ ¼ Ψ
cd1

; θ¼ T�T0

T1�T0
; Sxx ¼

λ
η0c

Sxx;

Sxy ¼
d1
η0c

Sxy; Syy ¼
d1
η0c

Syy; We¼Γc
d1

; _γ ¼ _γd1
c

; M¼
ffiffiffiffiffi
s
υ

r
B0d1; α¼ K '

cpρ
;

Pr¼ ν
α
; NT ¼

τDT ðT1�T0Þ
T0ν

; Nb ¼
τDBðC1�C0Þ

υ
; Gr ¼ ρgαd21ðT1�T0Þ

η0c
;

Br¼ ρgαd21ðC1�C0Þ
η0c

; Le¼ υ
DB

: ð11Þ

Using Eqs. (10) and (11) the resulting equations in terms of stream
function Ψ ðdropping the bars; u¼ ð∂Ψ=∂yÞ; v¼ �δð∂Ψ=∂xÞÞ can
be written as;

Re δðΨ yΨ xy�Ψ xΨ yyÞ ¼ �∂p
∂x

þδ
∂
∂x

ðSxxÞþ
∂
∂y

ðSxyÞþGrθþBrΦ

�M2 cos ΘððΨ yþ1Þ cos ΘþδΨ x sin ΘÞ;
ð12Þ

Re δ3ð�Ψ yΨ xxþΨ xΨ xyÞ ¼ �∂p
∂y

þδ2
∂
∂x

ðSyxÞþδ
∂
∂y

ðSyyÞ

þM2δ sin ΘððΨ yþ1Þ cos ΘþδΨ x sin ΘÞ;
ð13Þ

Re δðΨ yθx�Ψ xθyÞ ¼
1
Pr

ðθyyþδ2θxxÞþNbðδ2θxΦxþθyΦyÞ

þNT ðδ2ðθxÞ2þðθyÞ2Þ; ð14Þ

Re δ LeðΨ yΦx�Ψ xΦyÞ ¼ ðΦyyþδ2ΦxxÞþδ2
NT

Nb
θxxþNT

Nb
θyy; ð15Þ

where

Sxx ¼ 2½1þnðWe _γ�1Þ�∂
2Ψ

∂x∂y
;

Sxy ¼ ½1þnðWe _γ�1Þ� ∂2Ψ
∂y2

�δ2
∂2Ψ
∂x2

� �
;

Syy ¼ �2δ½1þnðWe _γ�1Þ�∂
2Ψ

∂x∂y
;

_γ ¼ 2δ2
∂2Ψ
∂x∂y

� �2

þ ∂2Ψ
∂y2

�δ2
∂2Ψ
∂x2

� �2

þ2δ2
∂2Ψ
∂x∂y

� �2" #1=2
;

ð16Þ

The corresponding boundary conditions in terms of stream
function are defined as

Ψ ¼ q
2

at y¼ h1 ¼ 1þa cos 2πx;

Ψ ¼ �q
2

at y¼ h2 ¼ �d�b cos ð2πxþϕÞ;
∂Ψ
∂y

¼ �1 at y¼ h1 and y¼ h2;

ð17Þ

θ¼ 0 on y¼ h1;

θ¼ 1 on y¼ h2; ð18Þ

Φ¼ 0 on y¼ h1;

Φ¼ 1 on y¼ h2: ð19Þ
where q is the flux in the wave frame, a; b; ϕ and d satisfy the
relation

a2þb2þ2ab cos ϕrð1þdÞ2:
Under the assumption of long wave length δ⪡1 and low

Reynolds number, Eqs. (12)–(16) become

0¼ �∂p
∂x

þ ∂
∂y

1þn We
∂2Ψ
∂y2

�1
� �� �

∂2Ψ
∂y2

� �

�M2 cos 2ΘðΨ yþ1ÞþGrθþBrΦ; ð20Þ
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