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a b s t r a c t

The spin configurations of the four-sublattice model with seven exchange interaction parameters (four of
them are taken as direct-exchange interactions, the other three as super-exchange interactions) on a
two-dimensional rectangular lattice have been investigated using a matrix method. For the four
sublattices, using the two sets of the exchange parameters, we obtain collinear and non-collinear spin
configurations for the given propagation vectors in the ground and the first excited states. When k¼0,
spin configuration is collinear ferromagnetic mode in the ground state and collinear antiferromagnetic
mode in the first excited state. When k¼[0.5, 0.5], spin configurations are non-collinear, that is, canted
structures.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

At the beginning of 1961, the most general method, including the
anisotropic couplings, was put forward by Bertaut [1–7]. Bertaut's
matrix method enables possible magnetic modes associated with a
given propagation vector. Moreover, the symmetry properties of
crystal gain importance. When the chemical and magnetic cells are
identical, symmetry properties of the results obtained are compa-
tible with that of Villain's method [8]. From the other part, the
results of this method also agreed with that of the group theory. The
greatest advantage of this method is to consider fundamental
interaction being isotropic classical Heisenberg and is also applic-
able when the chemical and magnetic cells are not identical.
Moreover, isotropic terms as well as anisotropic terms can be
expressed by a Hamiltonian of a second order and problem reduces
to an eigenvalue problem. Solving this eigenvalue equation, one is
able to find all possible magnetic configurations. The existence of
the helical structures in solid solutions xFe2O3(1�x) Cr2O3 [9] and in
the spinel structure [10] can be explained by the matrix method.
The solid solution CrAs1�xSbx in which the collinear magnetic
structure is observed by neutron diffraction is investigated by Kallel
et al. [11]. They determined the stability regions using the matrix
method and obtained the ferromagnetic and helical modes. Town-
send et al. [12] deal with triangular-spin structure by the application
of this method and predicted triangular-spin magnetic ordering for
KFe3(OH)6(SO4)2 and KFe3(OH)6(CrO4)2. Darendelioğlu et al. [13]
applied the two-dimensional orthorhombic lattice with four spins
using macroscopic and microscopic (matrix) methods and deter-
mined that the four collinear modes are along the z-axis and the
non-collinear modes are in the xy-plane of the two-dimensional
orthorhombic lattice.

On the other hand, there are some other methods for magnetic
structure determination. For example, using the Monte-Carlo
simulation method, Hong et al. [14] investigated the spin config-
urations of two-dimensional ferromagnetic/antiferromagnetic sys-
tems. In order to investigate the different magnetic states
corresponding to collinear and non-collinear spin configurations
of Mn5Ge3 compound, Stroppa et al. [15] performed fully uncon-
strained ab initio pseudo potential calculations within density
functional theory. Yu et al. have given the phase diagram of the
different spin configurations of a magnetic bilayer system consist-
ing of two ferromagnetic layers, based on a phenomenological
model [16]. Moreover, many researchers studied experimentally
whether collinear and non-collinear structures exist in the normal
spinel ZnFe2O4 [17], in MnFe2�xCrxO4 [18], in pure and impurity
doped Fe3BO6 [19], in multilayered Fe/Si films [20], in Fe–Zn
metallic glasses [21], in BaCo [22], in ɛ-FexN [23] and in CeH2/Fe
[24]. Furthermore, for the four-sublattice model, there are some
interesting works within the linear–spin–wave theory [25–27].

In this paper, we will apply Bertaut's matrix method to the
four-sublattice model on a rectangular lattice. Our aim is to find
the possible spin configurations of the rectangular lattice with
four-sublattice and seven exchange parameters using this theory.
The outline of this paper is as follows. In Section 2, we start with a
brief description of the matrix method and give the fundamental
equations. In Section 3, we have determined possible spin config-
urations for the given k-vectors and found collinear ferromagnetic,
collinear antiferromagnetic and non-collinear (canted) spin con-
figurations. Finally, Section 4 contains conclusions.

2. Matrix method

We derive spin configurations of the four sublattices on the
rectangular lattice using the matrix method of Bertaut [7]. We will
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assume that there is a classical interaction of Heisenberg type
between the spins. Hamiltonian is given by

H ¼�2∑
ij
JijSi USj; ð1Þ

where Jij is the exchange integral between spins at ri and rj. Si is
the spin vector at point ri.

Using the translational symmetry of the system, one obtains

λiSiðkÞ ¼∑
j
JijðkÞSjðkÞ; ð2Þ

where λi is a constant of proportionality, having the dimension of
an energy. After a Fourier transformation, Eq. (2) can be written as
a matrix equation:

ðJðkÞ�λÞ SðkÞ ¼ 0; ð3Þ

where λ is the diagonal matrix formed by the elements λiδij (i¼1,..,
n; n is the number of sublattices). Si(k) is a column vector being
the Fourier transformations of the Si(ri)

SiðkÞ ¼
1
N
∑
ri
SiðriÞ expð2πikUriÞ; ð4Þ

SiðriÞ ¼
1
N
∑
k
SiðkÞ expð�2πikUriÞ; ð5Þ

where N is the number of unit cells in the lattice. The hermitian
interaction matrix J(k) is the Fourier transformation of Jij and

whose matrix elements are defined as follows:

JijðkÞ ¼∑
ri
Jijexp½2πikUðri0�rjÞ�; ð6Þ

where ri0 is a fixed reference point and the summation is over all rj
belonging to the same Bravais lattice j.

The expression of Si(k) depended on phase is as follows:

SiðkÞ ¼ 1
2ðx̂þ iŷÞexpðiφiÞ; ð7Þ

where x̂ and ŷ are orthogonal unit vectors, ϕi is a phase angle of
sublattice i. The angle between the two spins Si(ri) and Si(ri) in a
one mode solution is given by

Θijðr1; r2Þ ¼ 2πkU ðri�rjÞþðφi�φjÞ: ð8Þ

The matrix J(k) in Eq. (3) still depends on the atomic coordinates.
With following transformation of eigenvectors:

Q i ¼ SiðkÞexpð�ikUri0Þ; ð9Þ

one may construct a hermitian matrix η(k) which does not depend
on the atomic coordinates

ðηðkÞ�λÞQ ¼ 0: ð10Þ

In the case of only one propagation vector k, the reference spins
are simply given by

SðrioÞ ¼Q iðkÞþQ n

i ðkÞ; ð11Þ

Sðri0Þ ¼ SiðkÞexpð�ikUri0ÞþSi
nðkÞexpðikUri0Þ; ð12Þ

Sðri0Þ ¼ x̂ cos ðkUri0þφiÞþ ŷ sin ðkUri0þφiÞ: ð13Þ

This is the main equation in order to find spin directions for a
given k-vector.

Fig. 1. Two-dimensional rectangular lattice with the four sublattices and the magnetic interactions between neighboring ions.

Table 1
Computationally obtained eigenvalues and their eigenvectors for given k-vectors.

k-vectors Exchange
parameters

Eigenvalues Eigenvectors

k1¼[0, 0] S-I λ1 (k1)¼0.026 Q1 (k1)¼[�½ ½ ½ �½]
λ2 (k1)¼�0.004 Q2 (k1)¼[½ ½ ½ ½]
λ3 (k1)¼�0.010 Q3 (k1)¼[½ ½ ½ ½]
λ4 (k1)¼�0.012 Q4 (k1)¼[½ ½ ½ ½]

S-II λ1 (k1)¼0.038 Q1 (k1)¼[�½ ½ ½ �½]
λ2 (k1)¼�0.078 Q2 (k1)¼[½ ½ ½ ½]
λ3 (k1)¼0.024 Q3 (k1)¼[½ �½ ½ �½]
λ4 (k1)¼0.016 Q4 (k1)¼[�½ �½ ½ ½]

k2¼[0.5, 0.5] S-I λ1 (k2)¼0.08 Q1 (k2)¼[½ ½ ½ ½]
λ2 (k2)¼�0.038 Q2 (k2)¼[½ �½ ½ �½]
λ3 (k2)¼�0.018 Q3 (k2)¼[½ �½ �½ ½]

S-II λ4 (k2)¼�0.024 Q4 (k2)¼[½ ½ -½ �½]
λ1 (k2)¼�0.002 Q1 (k2)¼[½ �½ ½ �½]
λ2 (k2)¼�0.034 Q2 (k2)¼[�½ �½ ½ ½]
λ3 (k2)¼0.024 Q3 (k2)¼[�½ ½ ½ �½]
λ4 (k2)¼0.012 Q4(k2)¼[½ ½ ½ ½]

Table 2
The corresponding phase angles for the ground and the first excited states.

k-vectors Exchange
parameters

Eigenvalues Phase angles

k1¼[0, 0] S-I λ4 (k1)¼�0.012 φ1¼0, φ2¼π, φ3¼0, φ4¼π

λ3 (k1)¼�0.010 φ1¼0, φ2¼0, φ3¼0, φ4¼0
S-II λ2 (k1)¼�0.078 φ1¼0, φ2¼0, φ3¼0, φ4¼0

λ4(k1)¼0.016 φ1¼π, φ2¼π, φ3¼0, φ4¼0
k2¼[0.5, 0.5] S-I λ2 (k2)¼�0.038 φ1¼0, φ2¼π, φ3¼0, φ4¼π

λ4 (k2)¼�0.024 φ1¼0, φ2¼0, φ3¼π, φ4¼π

S-II λ2 (k1)¼�0.034 φ1¼π, φ2¼π, φ3¼0, φ4¼0
λ1 (k1)¼�0.002 φ1¼0, φ2¼π, φ3¼0, φ4¼π
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