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a b s t r a c t

Soft ferromagnetic Fe-Co-Hf-N films, produced by reactive r.f. magnetron sputtering, are useful to study
the ferromagnetic resonance (FMR) by means of frequency domain permeability measurements up to the
GHz range. Films with the composition Fe33Co43Hf10N14 exhibit a saturation polarisation Js of around
1.35 T. They are consequently considered as being uniformly magnetised due to an in-plane uniaxial
anisotropy of approximately μ0Hu≈4.5 m T after annealing them, e.g., at 400 1C in a static magnetic field
for 1 h. Being exposed to a high-frequency field, the precession of magnetic moments leads to a marked
frequency-dependent permeability with a sharp Lorentzian shaped imaginary part at around 2.33 GHz
(natural resonance peak), which is in a very good agreement with the modified Landau–Lifschitz–Gilbert
(LLG) differential equation. A slightly increased FMR frequency and a clear increase in the resonance line
broadening due to an increase of the exciting high-frequency power (1–25.1 mW), considered as an
additional perturbation of the precessing system of magnetic moments, could be discovered. By solving
the homogenous LLG differential equation with respect to the in-plane uniaxial anisotropy, it was
revealed that the high-frequency field perturbation impacts the resonance peak position fFMR and
resonance line broadening ΔfFMR characterised by a completed damping parameter α¼αeff+Δα. Adapted
from this result, the increase in fFMR and decrease in lifetime of the excited level of magnetic moments
associated with ΔfFMR, similar to a spin-½ particle in a static magnetic field, was theoretically elaborated
as well as compared with experimental data.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

An ensemble of ferromagnetic transition metal atoms in a solid
state whose magnetic spin moments are impelled by a magnetic
high-frequency field to precess about their preferred direction
generated by an external or anisotropy field, is of special interest
in terms of resonance, permeability and damping behaviour. The
Landau–Lifschitz–Gilbert differential equation [1] in combination
to the Maxwell equation to describe eddy-currents [2], although
quasi-classical in nature, perfectly describes the dynamics of these
ferromagnetic moments in a wide frequency range. Dependent on
the shape of the material the equation can be adapted in terms of
demagnetisation effects, in order to illustrate the spatial dynamics
of the magnetic moments [3]. Especially, ferromagnetic films, for
which applications like magnetic storage devices, micro-inductors
and electromagnetic noise absorbers exist, need a deep insight
into their microscopic, dynamic material properties. A lot of work
was made on damping, i.e., broadening processes in magnetic bulk

materials dependent on the high-frequency power in the past [4–
8]. But the question, what impact is generated by the intensity of a
high-frequency excitation field in ferromagnetic films, has not
been entirely treated in a pragmatic way. In the following
explanation, a theoretic approach for the width of the perme-
ability resonance curve (spectral linewidth) dependent on the
high-frequency field intensity and its influence on the ferromag-
netic resonance frequency and damping as well as its comparison
with experimental data ought to be discussed.

2. Theory of FMR increase and resonance line broadening due
to High-frequency field perturbation

In order to theoretically describe the impact of the high-
frequency field on the frequency behaviour of a ferromagnetic
film, we try to make an approach by means of the well-established
Landau–Lifschitz–Gilbert (LLG) linear differential equation
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For convenience, eddy-currents are neglected, i.e., the film
must be thin enough and has to possess a sufficiently high
resistivity. The ferromagnetic resonance frequency (FMR)

f FMR ¼
γ

2π
μ0Heff ð2Þ

results from the first term on the right hand side of (1) if the
general phenomenological damping parameter α is hypothetically
considered to be zero (or at least α⪡1). μ0 is the magnetic constant,
and γ is the gyromagnetic constant whose value is set to around
190 GHz/T. Expression (2) is also equal to a resonance transition of
a quantum mechanical spin-½ system. If a non-negligible high-
frequency field exists, which makes the system to precess, the
resonance line, among other things, broadens due to perturbation
or coupling. In order to feel out this behaviour for a film with a
system of ferromagnetic moments, the following approach for the
effective magnetic field vector Heff is used [3], (Fig. 1(a)).
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here, we consider a thin ferromagnetic film with an in-plane
uniaxial anisotropy Hu and a saturation magnetisation Ms. The
magnitudes are attributed to the z-direction. The demagnetisation
field vector Hd with the demagnetisation factors N, set to
Nx¼Nz¼0 and Ny¼1, is sufficient for a film with a thickness much
smaller than its lateral dimensions. The mean perturbation field h
is defined to be in the x-direction and cannot be neglected if it is
not small enough (Fig. 1(b)). The absolute value of the effective
field vector in conclusion results in |Heff|

2¼hx
2+my

2+Hu
2. After

calculation the unknown magnetisation in y-direction can be
obtained by the expression my

2¼MsHu assuming that mx is very
close to Ms at the undamped resonance state. Consequently, Heff

results in

Heff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2
x þMsHu þH2

u

q
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and therefore, expression (2) changes to the following form:

f FMR ¼
γ

2π
μ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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which is similar to the Kittel resonance formula. In order to
determine the exact resonance peak with respect to damping and
external perturbation, the detailed “anisotropic” LLG for all mag-
netisation directions can now be established according to the film
dimensions.
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By calculating (6), the following system of two coupled homo-
geneous differential equations for mx and my can be arranged.

∂mx
∂t þ γαHu

1þα2
mx þ γðHuþMsÞ

1þα2
my ¼ 0

∂my
∂t − γHu

1þα2
mx þ γαðHuþMsÞ

1þα2
my ¼ 0

ð7Þ

The “anisotropic” solutions for the boundary condition mx(t)¼
m0x at time t¼0 (my(t)¼0) are formulated by the next expressions

mxðtÞ ¼m0xet=τ cos ð2πf FMRtÞ ð8Þ

myðtÞ ¼m0xet=τ
Huffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

H2
u þ HuMs

q sin ð2πf FMRtÞ ð9Þ

where

1
τ
¼ −

1
2
γα

ð2Hu þMsÞ
ð1þ α2Þ ð10Þ

is the relaxation rate with the lifetime τ of the uniformly preces-
sing system of magnetic moments.

The magnetisation in the z-direction can be decoupled from the
system (6) because ||M||¼const. (||M||/Ms¼1), that is, Ms is pre-
served, and then can finally be written as follows:

mz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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We are now interested in the ferromagnetic resonance fre-
quency fFMR which results from (7) and obtains the exact damping
parameter-dependent form.

f FMR ¼
γ

2πð1þ α2Þ2
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By applying α⪡1 or zero, one attains the Kittel resonance
formula again which is frequently used in literature. But for an
increasing damping parameter α, it can now easily be observed by

Fig. 1. Simple illustration of a magnetic moment which precesses about its effective field generated by the uniaxial anisotropy field Hu, the high frequency field hx and
demagnetisation field Hd (not indicated here). If hx is very small it can be neglected (a). If hx is higher it influences Heff and cannot be neglected (b).
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