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a b s t r a c t

Macroscopic hysteresis loops and microscopic magnetic moment distributions have been determined

by three-dimensional (3D) as well as one-dimensional (1D) micromagnetic models for exchange-

coupled Nd2Fe14B/a–Fe bilayers and carefully compared with each other. It is found that the results

obtained from the two methods are consistent with each other, where the nucleation and coercive

fields decrease monotonically as the soft layer thickness Ls increases whilst the largest maximum

energy products (roughly 600 kJ/m3) occur at Ls
¼5 nm. Moreover, the calculated angular distributions

in the thickness direction for the magnetic moments are similar. Nevertheless, the calculated critical

fields and energy products by 3D OOMMF are systematically smaller than those given by the 1D model,

mainly due to the local demagnetization fields, which are taken into account in the 3D calculation and

ignored in the 1D calculation. It is demonstrated by the 3D calculation that the large demagnetization

fields in the corners of the soft layers reduce the nucleation fields and thus facilitate the magnetic

reversal. Such an effect enhances as Ls increases. When Ls
¼20 nm, the differences between the

coercivity is as large as 30%, while the nucleation fields obtained by the two methods have opposite

signs.

& 2012 Elsevier B.V. All rights reserved.

1. Introduction

Exchange spring materials, with the hard and soft phases
exchange-coupled in the nanoscale, is proposed by Kneller in
1991 [1]. Such a material has drawn much attention in the past
two decades [2–21] due to its expected giant energy product,
with the large coercivity provided by the hard phase and the large
remanence coming from the soft phase. Nevertheless, the giant
energy product as large as 1 MJ/m3 predicted by Skomski and
Coey [2] has never been achieved. Experimental energy products
are much smaller [3–5,7–10], even smaller than the correspond-
ing single phased hard material, which is called energy product
paradox in some literatures [13]. A close review shows that the
experimental remanence is close to the predicted one however,
the measured coercivity is much smaller [3–5,7–10]. Therefore,
such an energy product paradox is intrinsically linked with
Brown’s coercivity paradox [23], where the measured coercivity
is much smaller than those predicted by the available theory.
Thus a reexamination of the present theories regarding hysteresis
loops and energy products in the exchange spring materials, may

not only provide a clue on how to increase the energy products of
these materials, but also give insight on the solution of Brown’s
paradox.

Skomski and Coey made their prediction on the basis of a one
dimensional (1D) micromagnetic model [2], which was first utilized
by Goto et al. [24]. Similar model has been intensively used in the
past two decades, by Leineweber and Kronmüller from Germany [6],
by Fullerton and Jiang from USA [7,8], by Asti and Pellicelli et al.
from Italy [11,14,19] and by Zhao et al. from China [12,13,16,18,21].
Such a simple model can reveal some important underlying physics
with the derived analytical formula. However, it is not enough to
take account of the magnetic distributions in the film plane as well
as the sophisticated microstructures existing in nature.

In this paper, hysteresis loops and magnetic reversal process of
Nd2Fe14B/a–Fe bilayer systems have been calculated using both a
3D software (OOMMF) [22] as well as the above mentioned 1D
method. The calculated results are carefully compared with each
other to demonstrate the similarities as well as the differences
between the two methods.

2. Micromagnetic model

The model used in this paper is an exchange–spring bilayers
composed of a hard layer and a soft one. An o-xyz coordinate
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system is constructed with the origin located at the center of the
interface. The magnetocrystalline axis of both the layers and the
applied field are assumed to be in the y direction for simplifica-
tion, as shown in Fig. 1. The superscripts s and h stand for the soft
and hard layers respectively, as a result, Ls and Lh denote the
thicknesses of the soft and hard layers respectively.

The three dimensional (3D) micromagnetic calculation of the
software OOMMF is based on a Landau–Lifshitz–Gilbert dynamic
equations [22]:

dM

dt
¼�9g�9M � Hef f�
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where M is the magnetization, Heff is the effective field, g� is the
Landau–Lifshitz gyromagnetic ratio, and a is a dimensionless
damping constant. The effective field is defined as follows:
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Eq. (2) is valid in the limit of a51 for dynamic studies.
However, for a calculation as performed in the present work to
search the equilibrium state where Heff approaches 0, this restric-
tion could be somewhat relaxed and a default value of 0.5 for a
has been adopted here to allow a fast converge. The average
energy density E in Eq. (2) is a function of M specified by Brown’s
equations [2,23]
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where A and K are the exchange and anisotropy energy constants,
respectively, H and Hd(r) are the applied and magnetostatic self-
interaction fields while MS¼M(r) is the spontaneous magnetiza-
tion. These equations hold for both the hard and soft phases. The
four terms at the right side of Eq. (3) correspond to the exchange
energy, the anisotropy energy, the applied field (Zeemam) energy
and the magnetostatic (demagnetization) energy.

The above 3D energy could be simplified to a one dimensional
(1D) expression if we ignore the magnetostatic interactions,
which are small for an infinitely large thin film. In one dimension,
the energy density per area in the film plane is [11,18]
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where a is the distance between the adjacent atomic planes near
the interface, y is the angle between the magnetization and the
applied field and m

!
is the magnetization unit vector at the

interface. The three terms inside the bracket of the above formula
are exchange energy, the anisotropy energy and the Zeeman
energy, while the last term is the interface exchange coupling
energy. A variational method [13] is used to minimize the energy

expressed in Eq. (4), which yields the equations for the angular
distribution (y as a function of z) as follows:
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where h¼H/Hk represents the reduced applied field with Hk¼2K/
(m0Ms) as the anisotropy field. D¼

ffiffiffiffiffiffiffiffiffi
A=K

p
is the Bloch wall width.

yh and ys are the directions of the magnetization at the outer
surfaces of the hard and soft phases, respectively. From these
equations the hysteresis loops and energy products can be
calculated. The 1D calculation is basically an analytical one.

In the 3D simulation carried out by OOMMF, the length and
width of both the soft and hard layers are set as 300 nm. The
material is divided into different cells according to different
thicknesses of the soft layer. The length and width of each cell
is 3 nm, which is close to the Bloch wall width of most hard
materials. The height of each cell is set as 1 nm except when the
thickness is 2.5 nm where the height of cell is 0.5 nm. The applied
field varies from 6 T to �6 T in the simulation, starting from a
positive saturation state, where magnetic moments in each cell
are uniformly distributed with the initial magnetization parallel
to the applied field.

In this work, Nd2Fe14B is chosen as the hard layer while a-Fe is the
soft one, with the following parameters [6,13]: Ms

s
¼1.71�106 A/m,

Ms
h
¼1.28�106 A/m, Ks

¼4.6�104 J/m3, Kh
¼4.3�106 J/m3, As

¼

2.5�10–11 J/m, and Ah
¼7.7�10–12 J/m. The thickness of the hard

layer keeps a constant value of 10 nm while that of the soft layer
varies between 1 nm and 20 nm. Analyses show that the giant energy
product occurs at this thickness region [13,16], where the critical
fields are not sensitive to the hard layer thickness. Only the exchange
interaction between the neighboring region pair is taken into account
and the free boundary conditions are chosen, The exchange energy
constant between the soft and hard layers is set as Ahs

¼10–11 J/m in
our calculation. The maximum and minimum time steps are specified
as 10–10 s and 0 s, respectively. The actual time step depends on the
thickness of the films, number of cells and other factors. According to
the OOMMF outputs, the time step is around 10–14 s for the
calculations presented in the manuscript.

3. Macroscopic hysteresis

Fig. 2 shows the major hysteresis loops of Nd2Fe14B/a–Fe
bilayer with various soft layer thicknesses, where Lh keeps a
constant value of 10 nm. One can find that the hysteresis loops
calculated by OOMMF and by the 1D analytical method are quite
similar, especially for small Ls, justifying the reliability of our
calculation. For thin soft layers, the loops are nearly rectangular
with almost the same coercivities, which decrease as Ls increases.
When Ls

Z5 nm, the hysteresis loops calculated by the two
different methods display some noticeable dissimilarities. The
nucleation based on OOMMF occurs much earlier, which leads to
smaller coercivities as well as the remanences compared with
those by the 1D method. Such dissimilarities enlarge as Ls

increases. When Ls
Z10 nm, the nucleation occurs at the first

quadrant of the hysteresis loops with the coercivity difference
larger than 30%. These dissimilarities arise from the larger
demagnetization field at the corner of the film, which is ignored
in the 1D analytical calculation.Fig. 1. The basic scheme for a double-layer calculated in this work.
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