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a b s t r a c t

The dynamic phase transitions are studied in the kinetic spin-2 Blume–Capel model under a time-

dependent oscillating magnetic field using the effective-field theory with correlations. The effective-

field dynamic equation for the average magnetization is derived by employing the Glauber transition

rates and the phases in the system are obtained by solving this dynamic equation. The nature (first- or

second-order) of the dynamic phase transition is characterized by investigating the thermal behavior of

the dynamic magnetization and the dynamic phase transition temperatures are obtained. The dynamic

phase diagrams are constructed in the reduced temperature and magnetic field amplitude plane and

are of seven fundamental types. Phase diagrams contain the paramagnetic (P), ferromagnetic-2 (F2) and

three coexistence or mixed phase regions, namely the F2þP, F1þP and F2þF1þP, which strongly

depend on the crystal-field interaction (D) parameter. The system also exhibits the dynamic tricritical

behavior.

& 2011 Elsevier B.V. All rights reserved.

1. Introduction

The Ising systems have been one of the most extensively
studied systems in the statistical physics and the condensed-
mater physics and have also been used as elementary models for
variety of phenomena. This is so not only because of the relative
simplicity with which approximate calculations for these models
can be carried out and tested, but also because versions and
extensions of models can be applied for description of a wide
class of real systems. Although the majority of studies have
focused on spin-1/2, spin-1 and spin-3/2 Ising models, higher
spin systems are not without interest. One of the important
higher spin systems is a spin-2 Ising model and has been paid
much attention for many years. An early attempt to study the
one-dimensional Ising model for S¼2 (also S¼1 and 3/2) was
made by Obokata and Oguchi [1] by generalizing the Bethe
approximation. They only calculated the energy and the specific
heat exactly. Since then, various aspects of equilibrium properties
of spin-2 Ising systems have been studied by well known
methods in equilibrium statistical physics such as the mean-field
approximation (MFA), the cluster variation method in pair

approximation, the effective-field theory (EFT), the pair approx-
imation with the discretized path integral representation and the
four-spin model approximation [2]. The ground state phase
diagrams of the systems have also been worked out [3]. The
antiferromagnetic spin-2 Ising system was also studied on the
Bethe lattice by the use of exact recursion relations [4]. We should
also mention that the spins of FeII ions are spin-2 and it is
experimentally found that these ions have anisotropy [5]. More-
over, the mixed spin (2, 5/2) Ising system is the prototypical
system that has been used for studying magnetic behaviors of the
molecular-based magnetic materials, such as N(n-C4H9)4FeIIFeIII

(C2O4)3 [6,7] and AFeIIFeIII(C2O4)3 [A¼N(n-CnH2nþ1)4 [6,8,9].
Thus, although a lot is known about the equilibrium properties

of the spin-2 Ising systems, the nonequlibrium properties of the
model have not been as thoroughly explored. Recently, the
dynamics of the spin-2 Ising systems under the presence of a
time-dependent oscillating external magnetic field were studied
by the dynamic MFA based on Glauber-type stochastic dynamics
[10], especially the dynamic phase transition (DPT) temperatures
were calculated and the dynamic phase diagrams are presented in
the kinetic spin-2 Blume–Emery–Grifftihs model with repulsive
biquadratic coupling [11,12]. In these works, it is found that spin-
2 Ising systems have an interesting dynamic behavior and give
rich dynamic phase diagrams within the dynamic MFA. This
method is one of the oldest and important known methods, and
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it is still consistently used in the current literature. Moreover, it
does offer a complete and relatively straightforward description
of phase transitions and allows for complete studies of all
thermodynamic properties in a uniform and relatively simple
way. On the other hand, since this method neglects correlations
between spins, it does not give accurate results, especially close to
the critical point. It should be mentioned that there is a strong
possibility that at least some of the first-order transition lines are
very likely artifacts of the mean-field approach due to its limita-
tions such as the correlation of spin fluctuations not being
considered. Therefore, the dynamics of spin-2 Ising systems
should be studied with more accurate techniques.

In this paper, we study the dynamical aspect of the spin-2
Ising model that contains a single-ion potential, which is known
as the spin-2 Blume–Capel model, under a sinusoidal oscillating
external magnetic field using the EFT with correlations based on
the exact Van der Waerden identity. We employ the Glauber
transitions rates [10] to construct the dynamic effective-field
equation. We investigate time variations of the average magne-
tization to find the phases in the system. We also study the
thermal behavior of the dynamic order parameters to characterize
the nature (continuous and discontinuous) of the phase transi-
tions and obtain the DPT points, and finally present the dynamic
phase diagrams in (T/zJ, h/zJ) plane. We should also mention that
the EFT method, without introducing mathematical complexity,
can incorporate some effects of spin–spin correlations through
the usage of the Van der Waerden identities and provide results
that are quite superior to those obtained using the MFA. From this
study, we also see the effect of spin correlations and artifacts of
some of the first-order transition lines in the dynamic mean-field
approach by comparing the results with the results given in Ref.
[11]. We should also mention that some of our conclusions were
presented at a conference [13] and summarized in the conference
proceedings [14]. Finally, it is worthwhile mentioning that the
EFT has been used to study dynamic phase transitions in the spin-
1/2 Ising systems [15,16], recently.

This article is organized as follows. In Section 2, the spin-2 BC
model is briefly described and the derivation of the dynamic
effective-field equation is given using the Glauber-type stochastic
dynamics in the presence of a time-dependent oscillating external
magnetic field. Detailed numerical results and discussions are
presented in Section 3, followed by a brief summary.

2. Model

The spin-2 Ising model that contains a single-ion potential or
crystal field interaction in addition to the bilinear exchange
interaction is known as the spin-2 Blume–Capel (BC) model,
which is an extention of the spin-1 BC or simply the BC model
[17]. The model is described by the following Hamiltonian:

H¼�Jij

X
/ijS
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where the Si takes the value 72, 71 and 0 at each site i of a
lattice and summation index /ijS denotes a summation over all
pairs of the nearest neighbor sites. Jij represents the spin–spin
interaction strength between sites i and j. For simplicity all Jij are
taken equal to a constant J40. D is the crystal-field interaction or
a single-ion anisotropy constant, h(t) is a time-dependent exter-
nal oscillating magnetic field and is given by

hðtÞ ¼ h0 sinðwtÞ, ð2Þ

where h0 and w¼2pn are the amplitude and the angular
frequency of the oscillating field, respectively. The system is in
contact with an isothermal heat bath at absolute temperature T.

Now, we use the effective-field theory with correlations to
obtain the effective-field dynamic equation for the spin-2 Ising
system. This method was first introduced by Honmura and
Kaneyoshi [18] and Kaneyoshi et al. [19], which is a more
advanced method dealing with Ising systems than the MFA,
because it considers more correlations. Within the framework of
the EFT, one finds that
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where n¼1, 2, 3 and 4 for spin-2, a¼ Jr,r¼@/@x is a differential
operator, z denotes the nearest-neighbor sites of the central site i

and z¼4 on the square lattice. The coefficients A(a), B(a), C(a) and
D(a) for spin-2 in Eq. (3) are given by

AðaÞ ¼ 1

6
8sinhðaÞ�sinhð2aÞ
� �

,

BðaÞ ¼ 1

12
16coshðaÞ�coshð2aÞ�15
� �

,

CðaÞ ¼ 1

6
sinhð2aÞ�2sinhðaÞ
� �

,

DðaÞ ¼ 1

12
coshð2aÞ�4coshðaÞþ3
� �

: ð4Þ

The functions fn(xþh) (n¼1, 2, 3 and 4) for spin-2 are defined
by
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Eq. (3) is also exact and is valid for any lattice. If we try to
exactly treat all the spin–spin correlations for that equation, the
problem quickly becomes intractable. A first obvious attempt to
deal with it is to ignore correlations; the decoupling approxima-
tion

/SiSi0 . . .SinSffi/SiS/Si0S. . ./SinS, ð6Þ

with ia i0a � � �a in has been introduced within the EFT with
correlations [18,20,21]. In fact, the approximation corresponds
essentially to the Zernike approximation [21] in the bulk problem,
and has been successfully applied to a great number of magnetic
systems, including the surface problems [18,20–22]. On the other
hand, in the mean-field theory, all the correlations, including the
self-correlations, are neglected. Based on this approximation,
Eq. (3) is reduced to

m¼/SiS¼ ½1þAðaÞ/SiSþBðaÞ/S2
i SþCðaÞ/S3

i S

þDðaÞ/S4
i S�

4f1ðxþhÞ9x ¼ 0, ð7Þ

q¼/S2
i S¼ ½1þAðaÞ/SiSþBðaÞ/S2

i SþCðaÞ/S3
i S

þDðaÞ/S4
i S�

4f2ðxþhÞ9x ¼ 0, ð8Þ

r¼/S3
i S¼ ½1þAðaÞ/SiSþBðaÞ/S2

i SþCðaÞ/S3
i S

þDðaÞ/S4
i S�

4f3ðxþhÞ9x ¼ 0, ð9Þ

M. Ertas- et al. / Journal of Magnetism and Magnetic Materials 324 (2012) 704–710 705



Download	English	Version:

https://daneshyari.com/en/article/1800212

Download	Persian	Version:

https://daneshyari.com/article/1800212

Daneshyari.com

https://daneshyari.com/en/article/1800212
https://daneshyari.com/article/1800212
https://daneshyari.com/

