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a b s t r a c t

Phases of S¼1 non-Heisenberg magnet at various relationships between the exchange integrals are

studied in the mean-field limit at zero temperature. It is shown that four phases can be realized in the

system under consideration: the ferromagnetic, antiferromagnetic, nematic, and the orthogonal

nematic states. The phase diagram is constructed. It is shown that the phase transitions between the

ferromagnetic phase and the orthogonal nematic phase and between the antiferromagnetic phase and

the orthogonal nematic phase are the degenerated first-order transitions. For the first time the spectra

of elementary excitations in all phases are obtained within the mean-field limit.

& 2012 Elsevier B.V. All rights reserved.

1. Introduction

Quantum spin systems are excellent objects for searching of
the unusual phases. The whole set of the exotic states has been
found in them, and the most prominent example is the famous
Haldane phase in the integer-spin antiferromagnetic chains [1,2].
Recently, another exotic state – the spin nematic – has been
probably discovered in the one-dimensional LiCuVO4 [3,4]. A spin
nematic state has zero dipolar order parameter, /SS¼0; but the
rotational symmetry is spontaneously broken because of the non-
zero quadrupolar order parameters SaSbþSbSa

� �
� 2

3 SðSþ1Þdab, a,
b¼x,y z. Generally, the spin-S system can be characterized by the
multipolar order parameters Sa1

Sa2
. . .San

� �
where n¼1 corre-

sponds to the dipolar order parameter, n¼2 – to the quadrupolar
order parameter, n¼3 – to the octupolar, and so on [5]. The states
with zero magnetization per site but with the finite multipolar
order parameters are a purely quantum phenomenon. For the last
twenty years such states have been being actively studied in the
crystal magnets [6–9] including the low-dimensional systems
[10–12]. This interest is related mainly with the investigation of
multicomponent Bose–Einstein condensates of the integer-spin
atoms [13–15]. The quadrupolar tensor is uniaxial for spin-1
systems, but the spin nematic states with non-axial symmetry are
possible in the systems with higher integer-spin values [16].

The aim of the present work is to build the phase diagram of a
completely isotropic spin-1 Hamiltonian and to discuss the
interesting properties of the phases with unusual ordering (the

spin nematic and the orthogonal nematic). We show that the
phase diagram contains the spin nematic and orthonematic states
in addition to standard ferro- and antiferromagnetic states within
the frameworks of the mean-field approximation. Such an analy-
sis of the phases in non-Heisenberg magnet can be applied to
both the two-dimensional and three-dimensional systems. Also,
up to our best knowledge, we for the first time obtain the spectra
of elementary excitations in all phases.

In the present work we consider the three-dimensional sys-
tem. In one-dimensional systems the quantum fluctuations
destroy the long-range magnetic order in all possible phases
except the ferromagnetic phase (where the order parameter is
conserved due to its commutation with the Hamiltonian); more-
over, the Lieb–Schulz–Mattis theorem requires the ground state
to be critical or to have broken translational invariance (is
dimerized, trimerized, etc.).

The Hamiltonian that allows to investigate the phases of the
non-Heisenberg spin-1 magnet has a very simple form

H¼�1

2

X
nan0

Jðn�n0Þð S
!

n S
!

n0 ÞþKðn�n0Þð S
!

n S
!

n0 Þ
2

ð1Þ

where J(n�n0), K(n�n0) are the constants of the Heisenberg and
the biquadratic exchange coupling, respectively; Si

n is the ith
component of the spin operator at the site n.

Let us consider the phases of the system described by the
Hamiltonian (1) with respect to the ratio of between the exchange
integrals. Besides, we suppose that the magnet is at low-tem-
perature, i.e., the temperature is far below the temperature of
magnetic ordering. Previously, the models similar to (1) have
been investigated rather extensively [10,17–24]; however, the
dynamical properties of spin nematics at various ratios between
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the exchange integrals are studied insufficiently because of
certain mathematical difficulties related with the calculation of
the dispersion equation of elementary excitations in two-
sublattice non-Heisenberg magnet. We are going to take the
advantage of the Hubbard operators’ technique [25] to describe
the dynamical properties of the model (1). Implementation of the
diagram technique for the Hubbard operators allows to develop
the regular procedure for calculation of the thermodynamical and
dynamical characteristics of the magnet. As it was noted in Ref.
[25], all the systems with pair interaction have the same repre-
sentation in the Hubbard operators’ representation which is,
without doubts, very convenient while developing the general
formalism.

2. Free energy density analysis

The further calculations will be carried out in the representa-
tion of irreducible tensor operators. Then the Hamiltonian (1) can
be re-written as follows:

H¼�1

4

X
nan0
½2Jðn�n0Þ�Kðn�n0Þ�ð S

!
n S
!

n0 ÞþKðn�n0ÞO2nO2n0 ð2Þ

where O2nO2n0 ¼
1
3 O0

2nO0
2n0 þO1

2nO1
2n0 þ

~O
1

2n
~O

1

2n0 þO2
2nO2

2n0 þ
~O

2

2n
~O

2

2n0 ;

O0
2 ¼ 2ðSz

Þ
2
�SðSþ1Þ; O1

2 ¼
1
2 ½S

z,ðSþ þS�Þ�þ ; O2
2 ¼

1
2 ðS

þ
Þ
2
þðS�Þ2

h i
;

~O
1

2 ¼
1
2i ½S

z,ðSþ�S�Þ�þ ; ~O
2

2 ¼
1
2i ðS

þ
Þ
2
�ðS�Þ2

h i
, and plus sign in sub-

script denotes anticommutator ([y,y]þ). Separating the mean-field
values, related with the ordering of the magnetic moment and the
quadrupolar moments, in the Hamiltonian (2), one obtains the single-
site Hamiltonian

H0ðnÞ ¼D�HSz
n�B0

2O0
2n�B2

2O2
2n ð3Þ

where H¼ J0�
K0
2

� �
Sz� �

; B0
2 ¼

K0
6 q0

2; B2
2 ¼

K0
2 q2

2; D¼ 1
2 J0�

K0
2

� �

Sz� �2
þ

K0
4
ðq0

2
Þ
2

3 þðq
2
2Þ

2
h i

; q0
2 ¼ O0

2n

D E
; q2

2 ¼ O2
2n

D E
; J0 ¼

P
n0

Jðn�n0Þ;

and K0 ¼
P
n0

Kðn�n0Þ. While deriving Eq. (3), we have taken into

account that the non-diagonal quadrupolar averages qi
2 (i¼xy,yz,zx)

equal zero. Because our main goal is to investigate the ground state at
zero temperature when the dimensionality of space is 2 or higher, the
mean-field approximation is quite adequate.

Solving the Schrödinger equation with the Hamiltonian (3),
one obtains the energy levels of a magnetic ion

E1 ¼D�B0
2�Hcos 2a�B2

2sin 2a, E0 ¼Dþ2B0
2,

E�1 ¼D�B0
2þHcos 2aþB2

2sin 2a ð4Þ

and the eigenvectors of the Hamiltonian (3)

cð1Þ
�� �

¼ cos a 1j iþsin a �1j i, cð0Þ
�� �

¼ 0j i,

cð�1Þ
�� �

¼�sin a 1j iþcos a �1j i ð5Þ

Parameter a, introduced in Eqs. (4) and (5), is the parameter of
generalized u–v transform and is determined by

tan 2a¼ B2
2=H ð6Þ

We construct the Hubbard operators on the basis of eigenvec-
tors of the Hamiltonian (3), XM0M

¼ c M0
� ��� �

c Mð Þ
� ��, related with

the spin operators as follows:

Sz
¼ cos 2aðH1

�H�1
Þ�sin 2aðX1�1

�X�11
Þ;

Sþ ¼
ffiffiffi
2
p
½cos aðX10

þX0�1
Þþsin aðX01

þX�10
Þ�; S� ¼ Sþ

� �y
ð7Þ

The Hamiltonian (3) is diagonal in Hubbard operators’ repre-
sentation, H0 ¼

P
M ¼ �1,0,1

EMHM
n where HM are the diagonal Hub-

bard operators.

We will consider two cases:

1. J(n�n
0

)40, when the single-lattice magnetic structure is
realized in the system;

2. J(n�n
0

)o0, when the two-sublattice magnetic structure is
realized in the system.

2.1. Phase in single-lattice non-Heisenberg magnet

Let us consider the single-lattice magnetic with J(n�n
0

)40. As
it follows from Eq. (4), in this case, the lowest energy level is E1,
and the order parameters (at T-0), as it follows from Eq. (7), are
given by

Sz� �
¼ cos 2a, q0

2 ¼ 1, q2
2 ¼ sin 2a ð8Þ

Taking into account the relationships (8) and that the lowest
energy level is E1, the free energy density (per site) can be
presented in the low-temperature limit as

F ¼�
J0�K0

2
cos22a ð9Þ

It should be noted that in the low-temperature limit the free
energy density coincides with the average internal energy. Only
the terms depending on the parameter a were taken into account
while deriving Eq. (9). By minimizing the internal energy (9) with
respect to the parameter a, one can find the spin states that are
realized in the single-lattice magnet.

1. At a¼0 and J04K0 we obtain that /SzS¼1, q0
2 ¼ 1, q2

2 ¼ 0.
Obviously, such values of the order parameters correspond to
the ferromagnetic (FM) ordering. The wave-function of the
ground state is c 1ð Þ

�� �
¼ 1j i:

2. At a¼p/4 and J0oK0 we obtain the following order para-
meters: /SzS¼0, q0

2 ¼ 0, and q2
2 ¼ 1. As we know [19], such an

ordering is of the tensor type, and the nematic (N) phase is
realized in the system. In this case, the wave-function of the
ground state is cð1Þ

�� �
¼ 1ffiffi

2
p ð 1j iþ �1j iÞ:

2.2. Phases in two-sublattice non-Heisenberg magnet

Consider now the two-sublattice system which is realized at
J(n�n0)o0. First of all, let us consider the case 9J949K9. If we
choose the quantization axis along the Z-axis, then the average
spin value of the first sublattice (per site) is parallel to the Z-axis,
and the average spin value of the second sublattice is antiparallel
to this axis. It is reasonable to turn the quantization axis for
second sublattice so that the directions of the quantization axes
coincide for both sublattices. This simplifies mathematical calcu-
lations and allows to consider the two-sublattice magnetic as the
single-sublattice system. The unitary rotation U yð Þ ¼

Q
n

expðiySy
nÞ

at angle y¼p transforms the components of the spin operator in
the second sublattice to Sx

n-�Sx
n, Sy

n-Sy
n, Sz

n-�Sz
n (at this, the

standard commutation relationships are conserved). The single-
site Hamiltonian looks as

H0ðnÞ ¼ ~DþHSz
n�B0

2O0
2n�B2

2O2
2n ð10Þ

where ~D ¼� 1
2 J0�

K0
2

� �
Sz� �2
þ

K0
4
ðq0

2
Þ
2

3 þðq
2
2Þ

2
� �

Solution of the Schrödinger equation with the Hamiltonian
(10) yields the energy levels and the eigenvectors coinciding with
(3) and (4) with the account of the following substitutions:
H-�H and D- ~D. In this case, the free energy density is given by

F ¼
J0

2
cos22a

Yu.A. Fridman et al. / Journal of Magnetism and Magnetic Materials 325 (2013) 125–129126



Download	English	Version:

https://daneshyari.com/en/article/1800537

Download	Persian	Version:

https://daneshyari.com/article/1800537

Daneshyari.com

https://daneshyari.com/en/article/1800537
https://daneshyari.com/article/1800537
https://daneshyari.com/

