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a b s t r a c t

The ground state and first excited state energies of an antiferromagnetic spin-1
2 chain with and without

a single lacking spin site are computed using exact diagonalization method, within the Heisenberg

model. In order to keep both parts of a spin chain with a lacking site connected, next nearest neighbors

interactions are then introduced. Also, the Density Matrix Renormalization Group (DMRG) method is

used, to investigate ground state energies of large system sizes; which permits us to inquire about the

effect of large system sizes on energies. Other quantum quantities such as fidelity and correlation

functions are also studied and compared in both cases.

& 2011 Elsevier B.V. All rights reserved.

1. Introduction

Random effects in low-dimensional antiferromagnetic quan-
tum spin systems have attracted the interest of theoretical and
experimental studies in the last decades; see for example [1,2].
Since then, physicists have elaborated theoretical models that
capture the essential of physics within a simple fashion. One of
the most fundamental and widely studied model, theoretically
and later numerically, is the Heisenberg model. In this context,
spin chains with random bonds [3–5], frustrated term [6], biqua-
dratic term [7], including all variations that can be explored, are
studied. Spin chains with a spin impurity that has a different spin
magnitude are also investigated [8]. Spin chains with single [9] as
well as randomly distributed [5] impurities and disorder [10,11]
are explored. The Kondo model [12] is used to describe a
magnetic impurity with spin S interacting locally with a non-
interacting conduction electron sea (e.g. rare earth metal alloys
and actinide elements).

In the present paper we study a spin chain with a single site
non-magnetic atom inserted. It could be also a lacking site.
Adding a single non-magnetic impurity to a spin chain compound
breaks the chains up to two segments. Our idea is to introduce
next nearest neighbors interactions to maintain connection
between spin sites at left and right of the ‘‘missing’’ spin. In fact,
non-magnetic ions that may be present in a magnetic material
serve, among other functions, to stabilize the material and to

provide connection to nearby spins with one another [13]. There-
fore, the spin-1

2 Heisenberg model with next nearest neighbors
interactions writes as

H¼
XN

i

½J1Si � Siþ1þ J2Si � Siþ2� ð1Þ

where Si denotes the spin S¼1/2 operator for lattice site i. Note
that for a site with no spin all connection operators with its
neighboring sites are omitted in the Hamiltonian.

This model with antiferromagnetic interactions (J1, J240) is
well studied [14–17,6]. In fact, the pure spin chain is well known
to display a quantum phase transition (Kosterlitz–Thouless tran-
sition) [18] from a gapless, translationally invariant state with
algebraic spin correlations (the spin fluid phase) to dimer gapful
state with exponentially decaying correlations at ac C0:24113,
where a¼ J2=jJ1j. At a¼ 0:5 (the Majumda–Ghosh point) [6], the
ground state is exactly solvable. It is a doubly degenerate dimer
product of singlet pairs on neighboring sites. In general, the
ground state is doubly degenerate for a4ac. For large J2

(a40:5) an incommensurate phase appears in the ground state
phase diagram [17,19].

The major part of our task is to compute ground state and
eventually first excited states energies and their corresponding
eigenstates of the above Hamiltonian. Physical quantities are then
computed through appropriate formulas. Computational physics
provides us with a panoply of numerical methods that range from
the obvious complete diagonalization to variational methods with
more or less accuracy and different areas of excellency. We have
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chosen two of them: exact diagonalization and Density Matrix
Renormalization Group (DMRG).

2. Exact diagonalization results

2.1. Ground state energy

The exact diagonalization technique is a direct method that
provides us with the whole spectrum of a system Hamiltonian
and the corresponding eigenvectors. Unfortunately, the order of
matrices to be diagonalized for the Heisenberg model grows as
2N; with N being the number of sites. Therefore, system sizes
treated by such method are very restricted and can go, using
different symmetries, to more or less 20 sites; which are far from
approaching the thermodynamic limit. Fortunately, the study of
such systems do not require the whole spectrum, and generally a
set of low-lying states, including the ground state and some few
excited states are sufficient to describe their properties. There-
fore, numerical methods had been elaborated by physicists to
focus on those restricted parts of the spectrum with more or less
accuracy; such as the earlier Lanczos method and the recently
developed method, the DMRG. Nevertheless, the exact diagonali-
zation still have its relevance, especially for those properties that
do not depend on the system size.

Thus, we diagonalize matrices for spin chains with N¼6, 8, 10,
12 using periodic boundary conditions. The use of these bound-
aries is governed by the fact that changing the position of the
lacking site in the chain does not affect the energy spectrum of a
chain with a single lacking site. The value of J2 goes from 0.05 to
0.55 with a step of 0.05. This is useful to sweep a large interval
where the well-known system undergoes quantum phase transi-
tions. This allows us to figure out how the system is affected
when a spin site is missed. The value of J1 is taken to be unity.

Figs. 1 and 2 display the first four lowest energies in function
of J2, for a spin chain without (with) a lacking site, respectively.
The chain length is taken to be N¼10 and J2 values go from 0.05
to 0.55. The latter interval is thought to contain a critical point of
the system [20,18]. In Fig. 1, one can see a nonvanishing gap that
appears, as it is the case when J2¼0.00. One can also see that the
gap is constant until J2 is around 0.25. Beyond this value the gap is
decreasing. Taking into account works that confirm the existence
of such a critical point at this value, one can think that the

behavior of the gap could be a signature of a spin system that
crosses a critical point. In the other hand, Fig. 2 shows that a
spin system with a missing site has no gap at all. Actually, the
first four low-lying energies including the ground state have
the same value. This degeneracy may be due to the frustration
of having a short chain (nine sites) with an odd number of
spin sites.

Now, we want to check the variation of the ground state
energy per site E0=N in function of J2. Thus, Figs. 3 and 4 display
E0=N for spin chains without (with) a lacking site, as J2 varies from
0.05 to 0.55. Both figures show that, for relative small system
sizes (up to 12 sites), the ground state energy per site is increasing
(decreasing) as the system size increases. The figures show also
that the increasing (decreasing) rate of E0=N depends on the value
of J2. We remark also that E0=N increases as J2 increases to reach a
maximum value when J2¼0.5 (Majumdar–Gosh point), then it
decreases.

As the above results are obtained for small system sizes, this
seems to be not so sufficient to make us deciding about the large-
N variation of the E0=N. Therefore, we need to use the DMRG
method, which enables us to compute the ground state energy for
more long spin chains. This will be explained after we investigate
quantum fidelity and correlation functions.
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Fig. 1. First four lowest energies as a function of J2 for a spin chain without a

lacking site spin, obtained by exact diagonalization.
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Fig. 2. First four lowest energies as a function of J2 for a spin chain with a lacking

site spin, obtained by exact diagonalization.
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Fig. 3. Exact ground state eigenvalue per site for a spin chain without a lacking

site as a function of J2, obtained by exact diagonalization.
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