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a b s t r a c t

Spin properties of single-doped and single-electron charged nano-systems having an odd number of

electrons are studied. Starting from an expression for quasiparticle energies in the GW approximation, a

simple analytical expression for the spin-splitting of an electron spectrum in such system is derived.

First-principles calculations by the DFT–GGA, Hartree-Fock, GW- and hybrid functional methods, which

were performed for the silicon clusters and metal phthalocyanine molecules of 1 nm diameter, support

this analytical consideration. They show that the spin-splitting energy calculated by the DFT–GGA

method is about one order lower, than the results obtained with the methods based on the many-

electron theory. A large value of spin-splitting in investigated nano-systems, which is typically of

several eV, has an origin in strong localization of electrons and weak screening of exchange interaction.

A possible use of this effect in spintronic applications is discussed.

& 2012 Elsevier B.V. All rights reserved.

1. Introduction

Progress in nanotechnology offers us possibility to operate
semiconductor systems of several nanometers in size (quantum
dots, nanoclusters, and colloidal nanocrystals). Even a few doping
atoms essentially modify properties of such small systems. For an
example, one impurity atom introduced into the silicon cluster of
3 nm in size provides the carrier concentration of 7�1019 cm3

that corresponds to a heavily doped semiconductor. The same
carrier concentration can be provided by charging the semicon-
ductor cluster by an electron or a hole. Such semiconducting
systems often display properties promising for applications. For
example, the InAs quantum dots of 2.8 nm in size, which were
charged by one electron, show a doublet splitting of 0.25 eV in the
tunneling conductance spectrum [1]. The optical spin orientation
experiments performed on a single Mn atom imbedded into a
CdSe quantum dot, demonstrated an anomalously long spin life-
time of ms time scale [2]. These facts indicate that single-doped
and single charged semiconductor nanosystems can be of signifi-
cant interest for spintronics and optoelectronics. Their develop-
ment has a solid technological ground, as several well controlled
fabrication methods for nanostructures with single dopants have

been described (see as examples [3,4]). In this paper we focus on
the theoretical study of single-dopant and single charged semi-
conductor nanosystems and large organic molecules, which have
an odd number of electrons. These nanosystems and molecules
have a spin moment (of 1 mB, as a rule), even if magnetic atoms are
absent in their composition. We show that the presence of the
spin moment splits the electron spectrum of small nanosystems
very significantly and this effect can be of practical interest.

2. Theory

The density functional theory (DFT) reproduces correctly the
ground state properties of solids (the total energy, elastic proper-
ties, electron density, etc), but fails in predicting the quasiparticle
energy spectrum of semiconductors and dielectrics, in particular,
the gap width (see, for an example, [5,6]). Both the ground state
properties and the quasiparticle spectrum can be successfully
described with the GW approximation to the many-electron theory.
In this approximation the energies of non-relativistic quasi-parti-
cles En,s (s is the index of spin-projection) are the eigenvalues of an
integro-differential equation:
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Here Vext(r) and VH(r) are the external and Hartree potentials,
respectively and Ss(r,r0,E) is the self-energy operator, which is
given by an expression [7]:
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where fi,s are electron occupation numbers and W(r,r0,E) is the
dynamically screened Coulomb interaction. In Eq. (2) the main
dependence on a spin index s goes from the electron occupation
numbers fi,s, while the wave functions ci,s(r) (we speak here about
the spatial part of ci,s(r), but not its spinor part) and the energy
differences Ei,s�En,s depends on s much more weakly. Taking this
into account, it is possible to estimate the spin-splitting of the
quasiparticle spectrum Dj from Eqs. (1) and (2) as
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Here we ignored a weak spin-dependence of the spatial part of
wave functions ci,s(r) and of the energy differences Ei,s�Ej,s. For
this reason the first contribution to l.h.s. of (1), which is propor-
tional to [p2/2mþVextþVH], and the second contribution to r.h.s. of
(2) drops out of the Eq. (3) for Dj. At this stage the special feature of
our system, namely, an odd number of electrons becomes impor-
tant. If the total spin moment of a system is 1 mB, all occupied states
i, excepting one, are occupied by electron pairs and have fi,m¼ fi,k¼1.
If one unpaired electron occupies the state i¼s, then the electron
occupation numbers of this state are fs,m¼1 and fs,k¼0. Substituting
these occupation numbers in (3), we obtain a simple formula for the
spin-splitting energy of the s-th state:
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where rs(r)¼9cs(r)92. The spin-splitting of other electron states is
much weaker, because of the orthogonality between the wave
functions cias(r) and cs(r).

As has been noted by several authors [8–11], the averaged
dielectric function of small quantum dots is significantly reduced
comparing to its bulk value. This reduction greatly affects the
spin-splitting Ds, therefore this effect should be considered in
details. The static screened Coulomb interaction W(r,r0,0) contains
two contributions: the bare Coulomb interaction V0(r)¼e2/r and
an indirect Coulomb interaction caused by electron response:
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Here the integral operator w(r,r0)¼dr(r)/dVext(r0) denotes the electron
density–density response. This operator is negative definite, as just
the operator �w�1(r,r0) determines the total energy increase pro-
duced by the deviation of electron density from its ground state
distribution. The GW-approximation suggests that the screened
Coulomb interaction W(r,r0,E) is described within the random-phase
approximation (RPA). In the RPA, the operator w(r,r0) has a general
form:
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where n¼{i, f} is a composite index, which combines the indexes
of one occupied (i) and one unoccupied (f) states. Because of the
orthogonality between the i-th and f-th wave functions, the functions
jn(r)¼ci
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where O is the nano-system volume. Condition (7) assures that
electron response conserves electron charge in a nano-system. Using
this condition, Eq. (4) can be rewritten as
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where Vs(r) is a potential generated by the density rs(r):
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and Vs
av is its value averaged over O. The first integral in (8) is the

spin-splitting energy corresponding to the Hartree-Fock approxima-
tion (the contribution of exchange interaction). The second integral
in (8) is the contribution of electronic correlations relating to the
screening of exchange interaction. This integral, which describes the
effect of electronic response in a nano-system, has the negative
sign, as w(r,r0) which is a negative definite integral operator. A special
feature of Eq. (8), which stems from (7), is the substitution of
dVs(r)¼Vs(r)�Vs

av for Vs(r) in the electronic response term. In large
systems this substitution changes nearly nothing, as Vs

av-0 at O-N.
In nano-size systems the averaging over small volume O provides Vs

av,
which is close to Vs(r), therefore the absolute value of the response
term in (8) is decreased by the factor (dVs/Vs)

2)1 comparing to the
bulk case. This decrease expresses the fact that electronic response in
small-size systems is strictly restricted by the charge conservation
requirement: the decrease of electronic density in one part of O
should be compensated by its increase in other parts, so the screening
of Vs(r) in one region of O leads to the anti-screening of Vs(r) in
others.

3. Calculation

Eqs. (4) and (8) show that the spin-splitting energy Ds depends
essentially on the spatial distribution of spin density rs(r)¼
9cs(r)92 and electronic response in a nano-system. To estimate
its value numerically, we performed the first-principles studies of
the objects of two types: (1) single-charged and phosphorus-
doped silicon nanoclusters and (2) single-charged and neutral
metal phthalocyanine (MPc) molecules. Our initial nanocluster
Si35H36 was of 1.1 nm diameter and close to a sphere in shape
(Fig. 1a). To gain an odd number of electrons, this cluster was
charged by a single electron or doped by a single P atom, which
substituted for the central atom of Si in Si35H36. The molecule of
metal phthalocyanine has a flat, cross-like shape with a metal
atom in the center and the diameter of 1.3 nm (Fig. 1b). The
molecule MPc has an odd number of electrons, if the molecule is
neutral and a metal atom has it. In the case of an even number of
electrons on a metal atom, an odd number of electrons is
obtained, if a single electron is added to the molecule or removed
from it.

Our first-principles calculations of nanoclusters were per-
formed by the supercell method using the ABINIT code [12] with

Fig. 1. The atomic structure of two studied nano-size systems: (a) the nanocluster

Si35H36 (on left) and (b) the molecule of metal phthalocyanine (on right).
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