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a b s t r a c t

In this paper we study the critical behavior of a two-sublattice Ising model on an anisotropic square

lattice in both uniform longitudinal (H) and transverse (O) fields by using the effective-field theory. The

model consists of ferromagnetic interaction Jx in the x direction and antiferromagnetic interaction Jy in

the y direction in the presence of the H and O fields. We obtain the phase diagrams in the H2T and O2T

planes changing values of the O and H parameters, respectively for fixed value at l¼ Jx=Jy ¼ 1. At null

temperature, the ground state phase diagram in the O2H plane for several values of l parameter is

analyzed. In the particular case of l¼ 1 we compare our results with mean-field theory (MFT) and was

not observed reentrant behavior around of the critical field Hc=Jy ¼ 2:0 for O¼ 0 by using EFT.

& 2012 Published by Elsevier B.V.

1. Introduction

The effect of transverse magnetic field on the low-dimensional
spin systems has recently been attracted much interest from
experimental and theoretical points of view. The observations [1]
on the quasi-one-dimensional spin 1/2 antiferromagnet Cs2CoCl4

are a realization of the effect of a transverse field on the low-
energy behavior of a quantum model. This shows a quantum
phase transition from the spin-flop phase (ordered antiferromag-
netically in the y direction) at the low magnetic field to a
paramagnet phase for high field.

The pure transverse Ising model (TIM) has been used to describe
a variety of physical systems, for example, strongly anisotropic
materials in a transverse field [2] and in cooperative Jahn–Teller
systems [3]. It was originally introduced by de Gennes [4] as a
pseudospin model for hydrogen-bonded ferroelectric such as the
KH2PO4 type [5,6]. From the theoretical point of view, the transverse
Ising model (TIM) has been investigated by a variety of techniques
such as renormalization group (RG) method [7], effective field
theory (EFT) [8–10], cluster variation method (CVM) [11], mean
field theory (MFT) [12], pair approximation (PA) [13] and Monte
Carlo (MC) simulations [14]. In the previous works mentioned
above, the authors focused attention on the critical behavior of the

phase diagram, where has not been considering the antiferromag-
netic system.

However, there are a few studies in the literature that include
the longitudinal field as well as the transverse field interactions in
the Ising antiferromagnet. Recently, a study of the effect of both
the transverse field (O) and the longitudinal field (H) on the Ising
antiferromagnet has shown that the TIM model presents a rich
variety of critical phenomena. For example, Neto and de Sousa
[15] have studied, by using EFT, the TIM antiferromagnet on two-
dimensional lattices [honeycomb (z¼3) and square (z¼4)] and
discussed the possible existence of a reentrant behavior obtained
by MFT at which the phase transition changes from second-order
in two critical temperatures around H¼HcðO¼ 0Þ ¼ zJ critical
value. By using the MFT technique, Geng and Wei [16,17] have
investigated the influence of the mixed transverse and long-
itudinal fields on the phase diagrams of an Ising metamagnet.
Similarly, Miao et al. [18] have studied this quantum model on a
honeycomb lattice within the framework of the EFT with correla-
tions. In these studies, the authors have reported the observation
of reentrant and multicritical behavior on the system. The critical
behavior of the TIM in one-dimensional has already been estab-
lished by exact results [19]. The quantum TIM antiferromagnet is
among the simplest conceivable classes of quantum models in
statistical mechanics to study quantum phase transition [20,21].
From a theoretical point of view, ground-state phase diagram of
metamagnetic systems have been studied [15,16,18] by using
several methods.

In the present paper, we will investigate the phase transitions
in the H2T and O2T plane on the anisotropic Ising model in both
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external longitudinal and transverse field by using the effective
field theory (EFT) in finite cluster. Recently, this quantum model
with a longitudinal magnetic field was treated numerically
[22,23] and the ground state phase diagram in the H2O
plane was studied for the one-dimensional transverse quantum
spin-1/2 Heisenberg model. Also we extend the study of the TIM
antiferromagnet in both external longitudinal and transverse
fields on an anisotropic square lattice within the framework of
the EFT approach in cluster with N¼1 spin. The EFT included
correlations through the use of the Van der Waerden identities
and provided results which are much superior than the mean field
theory (MFT). Our purpose is to investigate the ground state and
finite temperature phase diagrams. The paper is organized as
follows: in Section 2, we present the model and the relevant
expressions in the EFT approach are derived; in Section 3,
numerical results and discussions are given. Finally, the last
section is devoted to conclusions.

2. Model and formalism

The model to be studied is the nearest-neighbor (nn) Ising
antiferromagnetic in a mixed transverse and longitudinal field
magnetic divided into two equivalent interpenetrating sublattices
A and B, which is described by following Hamiltonian
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where smi are the mð ¼ x,y,zÞ components spin-1=2 Pauli operator
at site i, JxðJyÞ is the exchange coupling along the x(y) axis, dxðdyÞ

denotes the nearest-neighbor vector along the x(y) axis, H is the
longitudinal magnetic field, O is the transverse magnetic field and
l¼ Jx=Jy is the ratio between ferromagnetic and antiferromagnetic
interactions. Since sx

i and sz
i do not commute, a nonzero field, O,

transverse to the Ising direction, causes quantum tunneling
between the spin-up and spin-down eigenstates of sz

i , hence
causing quantum spin fluctuations. These fluctuations decrease
the critical temperature Tc at which the spins develop long-range
order. In the simplest scenario, where Jx ¼�Jy ¼ J40, the ordered
phase is ferromagnetic. At a critical field Oc , Tc vanishes, and a
quantum phase transition between a long-range-ordered ferro-
magnetic phase and a quantum paramagnet state occur. To the
best of our knowledge, the model (1) with transverse field has not
yet been examined in the literature. The particular case of O¼ 0
(classical model) has been recently studied by Neto et al. [24],
thus, in this work we generalize it to include quantum effects.

The TIM is here generalized by considering competing ferro-
magnetic (Jij ¼ Jx) and antiferromagnetic (Jij ¼�Jy) fixed couplings
along the x- and y-axis, respectively. The ground-state of the
model (1) is characterized by a parallel spin orientation in
horizontal direction and an antiparallel spin orientation of a
parallel spin orientation of nearest-neighbors in vertical direction
and so it exhibits Néel order within the initial sublattices A and B

(see Fig. 1), that is denoted by the superantiferromagnetic
(SAF) state.

The model is exactly soluble for the H¼O¼ 0 limits, and the
critical temperature is obtained by solving the following equa-
tion:
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in the particular case Jx ¼ Jy ¼ J we have the known exact value
kBTN=J¼ 2=lnð1þ

ffiffiffi
2
p
Þ.

In particular, at low fields and temperatures the model (1)
presents a superantiferromagnetic (SAF) phase. For null trans-
verse field, when longitudinal field’s intensities increase the

transition temperature decreases, where at T¼0 (ground-state)
a second-order transition occurs at Hc ¼ 2Jy.

As a starting point, the averages of a general function involving
spin operator components O(n) are obtained by [25]

/OðnÞS¼ TrfngOðnÞ expð�bHÞ
Trfng expð�bHÞ

� �
, ð3Þ

where the partial trace Trfng is taken over the set fng of spin
variables (finite cluster) specified by the multispin Hamiltonian
Hfng and / � � �S indicates the usual canonical thermal average.

In order to treat the model (1) by the EFT approach, we
consider a simple cluster on a lattice consisting of a central spin
and z perimeter spins being the nearest-neighbors of the central
one. The nearest-neighbor spins are substituted by an effective
field produced by the outer spins, which can be determined by the
condition that the thermal average of the central spin is equal to
that of its nearest-neighbor ones. The Hamiltonian for this cluster
is given by
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where A and B denote the sublattices.
Using the Hamiltonian (4) in the approximate Callen–Suzuki

relation, Eq. (3), we obtain the average magnetizations in sub-
lattice A, mA ¼/sz

1AS, that is given by
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where a1A ¼ Jx
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Now using the identity expðaDxþbDyÞFðx,yÞ ¼ FðxþyþaþbÞ

(where Dm ¼ @=@m is the differential operator) and the Van der
Waerden relation for the two-state spin system, i.e., expðasz

i Þ ¼

coshðaÞþsz
i sinhðaÞ), Eq. (5) can be rewritten as
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Fig. 1. Ground state of the quantum superantiferromagnetic Ising on an anisotropic

square lattice described by the Hamiltonian in Eq. (1).
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