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a b s t r a c t

Geometrical optimization of tetra-3d metal nitrides (Mn4N, Fe4N, Co4N, and Ni4N) has been performed

and the relations of their energies (E) and their total magnetic moments (M) are obtained by plane-

wave-basis density-functional calculations without any assumption of specific spin arrangement. The

E vs. M relations obtained for Fe4N and Mn4N have a bimodal character. The ground state of Fe4N is a

high-spin state, which would correspond to the ferromagnetic character, while that of Mn4N is a low-

spin state, which would correspond to the observed ferrimagnetic character. Lattice constants and total

magnetic moments of these tetra-3d metal nitrides are almost accurately predicted. From the spin-

polarized densities of states curves, Co4N would have the largest spin polarization ratio of 0.88, which

suggests Co4N can be a candidate material for ferromagnetic electrodes for spin-injection.

& 2010 Elsevier B.V. All rights reserved.

1. Introduction

There has been a renewed interest in iron-based nitrides,
especially in Fe4N, for ferromagnetic electrodes for spin-injection
toward highly efficient spin-electronic devices [1]. Vast number of
studies [2–4] have been devoted so far in order to understand the
higher magnetic moment of Fe4N than pure Fe. The calculated
total magnetic moments per formula unit lie between 9.34 and
9.67 mB [3], which is close to 8.86 mB, the value of magnetic
measurements [5].

Fe4N crystallizes in a simple-cubic antiperovskite structure
with the space group Pm3̄m. Fe atoms are arranged in the face-
centered-cubic (fcc) structure and N atoms occupy the body
center positions of the Fe fcc cells. The insertion of N atoms leads
to two inequivalent crystallographic Fe sites, the corner Fe (Fec)
and the face-center Fe (Fef). Though this structure is common for
neighboring tetra-3d metal nitrides, Mn4N, Co4N and Ni4N,
theoretical and experimental studies on these nitrides are
relatively scarce with the exception of the ferrimagnetic Mn4N.
How the magnetic characters of these tetra-nitrides are depen-
dent on the number of 3d-electrons has not been extensively
studied. This situation has motivated the present work; that is,
the aim of the present work is to clarify how the number of
3d-electrons will have affect the magnetic behaviors.

It is well-known that the distance between atoms has a
vital effect on the magnetic properties through the exchange

interaction. We tried to perform geometrical optimization so as to
avoid possible inherent errors caused by the approximation, and
then, the magnetic moments were calculated using optimized
parameters instead of observed ones.

It should be noted here that most of the previous calculations
on magnetic properties have been performed using a spherical
wave expansion of wavefunctions (an atomic sphere approxima-
tion; ASA) or the linearized muffin tin orbital (LMTO) method.
However, these calculations are based on a localized basis set
and are not favorable for optimization because (1) correction
using ‘‘empty sphere’’ to overcome the difficult in treating the
interstitial region of ‘open’ structure is problematic if the atoms
move as in the case of geometrical optimization and (2) Pulay
correction in the calculation of Hellmann–Feynmann force in the
optimization process is also problematic when localized basis sets
are used. Therefore, we did not adopt these methods. Instead, we
adopted a plane-wave-basis calculation, since this is favorable for
performing geometrical optimization calculation.

No specific spin arrangement was assumed beforehand such as
ferromagnetic, ferrimagnetic, or pure antiferromagnetic coupling
between Mec and Mef sites, which was not the case for the
previous calculation of Mn4N [6]. One may consider that there is
still room for dispute on whether the present plane-wave method
can treat properly non-collinear spin arrangement such as an
antiferromagnetic triangular lattice or not. Since we could not
obtain spatial spin-distribution of the system, we cannot say
anything unambiguously about this anxiety at present. Therefore,
the description of ‘no specific spin arrangement was assumed’
here might be limited to the cases where non-collinear arrange-
ments are not allowed.
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2. Calculation methods

We used a code of CASTEP (CAmbride Serial Total Energy
Package) [7], a first-principle pseudopotential method based on
DFT, for describing the electron–electron interaction, a pseudo-
potential description of the electron–core interaction, and a
plane-wave expansion of the wavefunctions, developed by Payne
et al. As for the method of approximation to the exchange–
correlation term of the DFT, the local spin density approximation
with the generalized gradient correction [8] was used. The
pseudopotential used is the ultrasoft pseudopotential generated
by the scheme of Vanderbilt [9] with the non-linear correction
[10,11] implemented to treat the local spin density dependence of
the exchange and correlation energy. Wavefunctions were
expanded by plane-waves, the number of plane-wave-expansion
of which is characterized by a cutoff energy, Ecutoff. The adopted
Ecutoff is 400 eV. As for the k-points sampling for the total energy
calculation, the Monkhorst–Packe scheme [12] with the mesh
parameter of 10�10�10 was used, which corresponded to the
spacing of 0.3 nm�1 in the reciprocal space and produced 500 k-
points from the irreducible part of the Brillouin zone.

Crystallographic parameters and the total magnetic moments
of compounds are determined by the total energy minimization
algorithm using the Broyden–Fletcher–Goldfarb–Shannon opti-
mization procedure under the constraint condition of the space
group. The convergence of the optimization mode is controlled by
four criteria, namely, the energy change between two steps, the
root-mean-square (rms) residual force on movable atoms, the rms
displacement of atoms during the geometrical optimization
process, and the rms residual bulk stress must be smaller than
1 meV, 10�10 N, 10�4 nm, and 70.3 GPa, respectively.

However, choice of initial parameters to find the state with
minimum energy has been found to be very problematic. When
all the parameters are simultaneously varied, the conversion
process in the optimization procedure is sometime unstable and
finally attains different states depending on the assumed initial
parameters. This was found to have a close relation to the
‘bistability’ of the system, as stated later.

Therefore, we were obliged to perform optimization calcula-
tions using several initial conditions and selected the really stable
state by choosing the state that had the minimum energy. In
concrete, the calculations have been first performed by the ‘fixed-
spin-moment procedure’, which finds the ground state of an
electron’s system under a constraint that the total magnetic
moment of the system is fixed to several assumed values. After
obtaining the relation of energies (E) and assumed total magnetic
moments (M) of the system, we restarted a full-optimization
calculation with simultaneous relaxation of lattice parameters
and the total magnetic moment using the state of the local energy
minimum in the obtained E vs. M relation as an initial condition of
the present full optimization.

3. Results and discussion

At first, we show the results on the total magnetic moment, M,
dependence of the energy, E, of Fe4N in Fig. 1. Though we
anticipated a simple relation such as a quadratic one between M

and E, the results show a bimodal property. In this figure, closed
circles show the results by a fixed-spin-moment procedure. The
result shown by an open circle (lattice parameter, a¼0.376 nm,
M¼9.55 mB, and E¼�3745.54 eV) was obtained by a full
optimization.

Optimization processes converged well to this state, being
irrespective of which states shown by closed circles are selected
as an initial condition. This convergent process is expressed

symbolically by dashed arrows in Fig. 1. Thus, the state with the
minimum energy could be rigorously predicted in this case.
However, this is not the case in Mn4N as described later. The
predicted magnetic moment of 9.55 mB/cell is close to the
previous results of calculations referred above [3].

The lattice constants of optimized structure under
several assumed magnetic moments are also presented by open
squares in Fig. 1. Increase in the magnetic moment is generally
accompanied by the increase in the lattice constant, which is
usually observed as magnetovolume effect in ferromagnetic
alloys. The predicted lattice constant at the energy minimum,
0.376 nm, is close to the observed value of 0.3796 nm [13] and the
present calculation was found to give a relatively reliable
prediction.

However, it should be noted that there is another energy-
minimum near the point of (M¼3 mB/cell). Though the
corresponding state has not been experimentally confirmed, this
must be a metastable state with a ferrimagnetic character since
this behavior resembles the case of fcc-Fe where a high-spin
phase and low-spin phase appear at several selected cell volumes
[14]. This ferrimagnetic state has a relatively large lattice
constant, compared to the neighboring states of M¼1 and
M¼5 mB/cell. This is apparently contrary to the general tendency
between M and lattice constants stated above. This can be
understood if the magnitude of atomic moments on each atom
would remain large and antiparallel alignment of localized
moments gives birth to the small total magnetic moment of the
system just as in the case of antiferromagnetic Ni–Mn alloy. For
binary solid solution of 3d transition metal alloys, the relation
between the lattice constant and the magnetic moment is
expressed as a(x)¼aA(1�x)+aBx+Co9m94 , where x is the
atomic fraction, aA, aB, and C are parameters, o9m94 is
the average magnitude of atomic magnetic moments but not
the total magnetic moment of the system [15]. This behavior
seems partly to support the localized spin model of metals and
alloys, though itinerant spin models are usually appropriate for
the explanation of magnetism of metals and alloys. It may be
interesting that the present calculations are essentially based on

Fig. 1. Total magnetic moment dependence of the energy of Fe4N. In this and

succeeding figures, closed circles show the results obtained by a fixed-spin-

moment procedure. An open circle shows the result obtained by simultaneous

relaxations of the lattice constant and spin of the total system. Optimized lattice

constants for each magnetic moment are also given by open squares. Dashed

arrows symbolize the convergence of that optimization process irrespective of

which states shown by closed circles are selected as an initial condition.
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