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a b s t r a c t

A local flexomagnetoelectric (A.P. Pyatakov, A.K. Zvezdin, 2009) effect in the magnetic domain walls (DWs)

of the cubic hexoctahedral crystal has been investigated on the basis of a symmetry analysis. The strong

connection between magnetic symmetry of the DW and the type of the distribution of the electric

polarization was shown. Results were systemized in the scope of the DW chirality. It was shown, that new

type of the local flexomagnetoelectric coupling corresponds to the presence of the coupled electric charge

in the DW. It was found that all time-noninvariant chiral DWs have identical type of spatial distribution of

the magnetization and polarization. There are coincidence between the symmetry predictions and results

obtaining from the known term of the flexomagnetoelectric coupling for transverse polarization

components.

& 2010 Elsevier B.V. All rights reserved.

1. Introduction

Coupling mechanism between magnetic and electric subsystem
in magnetoelectric materials [1] is of considerable interest to
fundamentals of condensed matter physics and for the applications
in the novel multifunctional devices [2]. The electric polarization
can be induced by the homogeneous [3–7] and inhomogeneous
[8–12] magnetization distributions. The last are micromagnetic
structures like domain walls (DWs) [8,12–17] and magnetic
vortexes [18]. It was shown [17] that the magnetoelectric coupling
in the magnetic DWs can be described in the same manner as the
ferroelectricity in the spiral magnets. Such type of the magneto-
electric interaction is described by the Lifshitz invariant-like
coupling term PiMjrkMn [5,8,10–12]. It was called as flexomagne-
toelectric interaction [19–25]. In general case such free energy term
is allowed by any crystal symmetry [26]. Consequently, the electric
polarization induced by the micromagnetic structure can appear in
any magnetic material even in centrosymmetric one.

It is well known that magnetoelectric effects are closely related
to the magnetic symmetry. This principle has been applied for the
DWs with specific symmetry [8,12]. It was not compared with
phenomenological description of the flexomagnetoelectric effect.
The purpose of this work is to extend the symmetry classification to
all possible magnetic point groups and compare results with the
phenomenological investigations of the cubic m3m crystal.

2. Group-theoretical description of the flexomagnetoelectric
coupling in the domain walls

2.1. Symmetry classification of the domain walls

Since DWs can be considered as thin layers, their symmetry is
described by one of the 528 magnetic layer groups [28,29]. To
determine the layer’s physical properties continuum approxima-
tion is used, which leads to point-like layer groups [30]. If
continuous translation operation is considering as identity then
these groups transform to magnetic point groups. It was shown
[31] that there are 125 of such groups. It was found that if magnetic
point group is pyroelectric and/or pyromagnetic then DW carries P
and/or M, respectively [32]. These criteria were derived from the
conditions of the appearing of the uniform P [33,34] and/or M
[35,36]. After their application to any inhomogeneous region they
predict existing of even parts in functions of distribution of P and/or
M [37–40]. Identification of the remaining odd parts of these
functions were formulated [37–40] based on symmetry transfor-
mations which interrelate domains.

Let us choose the coordinate system XYZ connected with the DW
plane (axis Z is the DW plane normal direction). The distribution of
the polarization is P(z)¼exPx(z)+eyPy(z)+ezPz(z). The magnetic
point group of the DW contains two types of symmetry transfor-
mations. First type transformations g(1) do not change the spatial
coordinate z. If transformation g(1) is a rotation around n-fold
(n41) symmetry axis nz then it allows only Px(z)¼Py(z)¼0. Second
type transformation g(2) has opposite property: g(2)z¼�z. This
transformation allows only even (S) or odd (A) functions Pi(z),
where i¼x,y,z. If the magnetic point group of the DW is non-polar

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/jmmm

Journal of Magnetism and Magnetic Materials

0304-8853/$ - see front matter & 2010 Elsevier B.V. All rights reserved.

doi:10.1016/j.jmmm.2010.10.028

n Tel.: +380 68 394 05 52.

E-mail addresses: b.m.tanygin@gmail.com, bmtanygin@ukr.net

Journal of Magnetism and Magnetic Materials 323 (2011) 616–619

www.elsevier.com/locate/jmmm
dx.doi.org/10.1016/j.jmmm.2010.10.028
mailto:b.m.tanygin@gmail.com
dx.doi.org/10.1016/j.jmmm.2010.10.028


then P(z)¼�P(�z) and at least component Pz(z) is nonzero.
Consequently, all 125 magnetic point groups of DWs allow P.

If magnetic point group of DW is non-pyromagnetic, then
M(z)¼0 takes place in cases when transformations g(1) are the
following: time reversal operation 10 and/or rotations around k-fold
symmetry axes k

0

z (k42) and/or rotations around n-fold symmetry
axes nz (n41), which exists simultaneously with reflection in plane
m? orthogonal to the DW plane. Otherwise, the DWs with non-
pyromagnetic point group have the magnetization distribution
M(z)¼�M(�z). Only 64 from 125 magnetic point groups of DWs
allow M [37]. They correspond to the magnetic DWs. As far as cubic
m3m crystal does not contain 6-fold symmetry axes (including
inversion axes) it is necessary to exclude the magnetic point groups
containing such symmetry elements. The remaining set consists of
the 57 magnetic point groups [38]. These groups are presented in
Tables 1–3. The symbol (A,S) means that the specific function is the
sum of odd and even function. The magnetic point groups which
allow only two zero components of M or all odd components
correspond to the cases of the 9M9aconst. Such DWs appear near
point of the phase transition [39].

The magnetic point group of the DW is the subgroup of the
magnetic point group GP describing the symmetry of the crystal in
the paramagnetic phase [39]. If influence of the crystal surfaces on
the micromagnetic structure is taken into account then the group
GP should be produced by the intersection of the magnetic point
group G1P (crystallographic class joined with transformation 10) and
magnetic point group GS described the symmetry of the crystal
surface. For the case of film or plate the GS is N/mmm10. The
corresponding symmetry theory was described in [38].

Group-theoretical methods permit identification of the DW
multiplicity [37]: the number of the DWs with identical energy and
different structures. The DW multiplicity qk is determined by the
relations of the group orders: qk¼9GP9/9Gk9, where Gk is the
magnetic point group of the DW. If neighboring domains are
determined then two different multiplicities appear: the DW
multiplicity at the fixed boundary conditions qu

k ¼ 9GB9=9Gk9 and
the multiplicity of the boundary conditions qB¼9GP9/9GB9. Here the
group GB is a magnetic point group of the boundary conditions
(combination of two neighboring domains) [37,39]. GB is the
subgroup of the GP and is defined by type of DW and orientations
of the domains magnetization directions in relation to the crystal
surface [38]. It is worth to mention, that all possible groups GB are
the same set as all possible groups Gk (Tables 1–3). There are qk

cosets and corresponding qk lost transformations gðlÞi (members of

adjacent classes [37–40]) in series:

GP ¼ gðlÞ0 GkþgðlÞ1 GkþgðlÞ2 Gkþ � � � þgðlÞqkGk ð1Þ

where gðlÞ0 � 1. These lost transformations are the transformations
which relate all DWs with identical energies and different
structures.

2.2. Application of the theory for description of the

flexomagnetoelectric coupling

The local flexomagnetoelectric effect in the magnetic domain
walls (DWs) of the cubic m3m crystal is described by the following

Table 1
Types of spatial distribution of electric polarization induced by flexomagneto-

electric effect in magnetic DWs with the time-invariant chirality.

k Magnetic

point group

Mx(z) My(z) Mz(z) Px(z) Py(z) Pz(z)

7 2
0

x2y2
0

z
A S 0 0 0 0(A)

8 2
0

z
A,S A,S 0 0 0 0(A,S)

10 2
0

x
A S S S A 0(A)

13 2y A S A A S 0(A)

16 1 A,S A,S A,S A,S A,S 0(A,S)

19 2z 0 0 A,S 0 0 0(A,S)

21 2x2y2z 0 0 A 0 0 0(A)

24 3z 0 0 A,S 0 0 0(A,S)

27 3z2x 0 0 A 0 0 0(A)

30 4z 0 0 A,S 0 0 0(A,S)

33 4z2x2xy 0 0 A 0 0 0(A)

50 2z2
0

x2
0

y
0 0 S 0 0 0(A)

53 3z2
0

x
0 0 S 0 0 0(A)

57 4z2
0

x2
0

y
0 0 S 0 0 0(A)

Table 2
Types of spatial distribution of electric polarization induced by flexomagneto-

electric effect in magnetic DWs with the time-noninvariant chirality.

k Magnetic

point group

Mx(z) My(z) Mz(z) Px(z) Py(z) Pz(z)

12 m
0

x
0 A,S A,S 0 A,S 0(A,S)

14 2y=m
0

y
A 0 A A 0 0(A)

15 1 u A A A A A 0(A)

17 m
0

xm
0

z2y 0 S A 0 S 0(A)

18 m
0

z
S S A S S 0(A)

20 2z=m
0

z
0 0 A 0 0 0(A)

22 m
0

xm
0

y2z 0 0 A,S 0 0 0(A,S)

23 m
0

xm
0

ym
0

z
0 0 A 0 0 0(A)

26 3zm
0

x
0 0 A,S 0 0 0(A,S)

29 3
0

zm
0

x
0 0 A 0 0 0(A)

31 4z=m
0

z
0 0 A 0 0 0(A)

32 4zm
0

xm
0

xy
0 0 A,S 0 0 0(A,S)

34 4z=m
0

zm
0

xm
0

xy
0 0 A 0 0 0(A)

35 4
0

z
0 0 A 0 0 0(A)

36 4z=2xm
0

xy
0 0 A 0 0 0(A)

42 3
0

z
0 0 A 0 0 0(A)

46 2
0

z=m
0

z
S S 0 0 0 0(A)

47 2
0

x=m
0

x
0 S S 0 A 0(A)

Table 3
. Types of spatial distribution of electric polarization induced by flexomagneto-

electric effect in magnetic achiral DWs.

k Magnetic

point group

Mx(z) My(z) Mz(z) Px(z) Py(z) Pz(z)

1 mxmzm
0

y
A 0 0 0 0 0(A)

2 mu

ymx2u

z
A,S 0 0 0 0 0(A,S)

3 mxmz2y A 0 0 0 0(S) 0(A)

4 2
0

x=mx
A 0 0 0 0(A) 0(A)

5 2
0

z=mz
A A 0 0 0 0(A)

6 my A,S 0 0 0 0(A,S) 0(A,S)

9 mzm
0

y2
0

x
A 0 S S 0 0(A)

11 mz A A S S S 0(A)

43 mym
0

xm
0

z
0 S 0 0 0 0(A)

44 mym
0

z2
0

x
0 S 0 0(S) 0 0(A)

45 2y/my 0 S 0 0(A) 0 0(A)

48 1̄ S S S A A 0(A)

49 2z/mz 0 0 S 0 0 0(A)

51 mzm
0

xm
0

y
0 0 S 0 0 0(A)

55 3zm
0

x
0 0 S 0 0 0(A)

56 4z/mz 0 0 S 0 0 0(A)

58 4z=mzm
0

xm
0

xy
0 0 S 0 0 0(A)

59 4z 0 0 S 0 0 0(A)

60 4z2
0

xmxy
0 0 0 S 0 0 0(A)

64 3z 0 0 S 0 0 0(A)
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