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a b s t r a c t

This paper is devoted to study the Routh–Hurwitz stability criterion from the MnZn and NiZn soft

ferrites using a phenomenological model with the gyromagnetic spin contribution and domain wall

contribution. The magnetodynamic equation and the harmonic oscillator equation have been used to

obtain the domain walls and the spin contribution of the magnetic susceptibility. The ferrite materials

have been considered as linear, time invariant, isotropic and homogeneous, and the magnetization

vector is proportional to the magnetic field vector. The resulting expression of the magnetization in

time domain of both ferrites under study has been obtained by mean of the inverse Laplace

transformation applying the residue method. The poles of the magnetic susceptibility have negative

real parts, which ensures that the response decays exponentially to zero as the time increase. The

degree of the numerator’s polynomial of the magnetic susceptibility is less than the degree of

denominator’s polynomial in the magnetic susceptibility function: and the poles are located in the

half left s-plane. Then the system is bounded-input, bounded-output (BIBO), and the results agree with

the Routh–Hurwitz stability criterion for the MnZn and NiZn soft ferrites.

& 2011 Elsevier B.V. All rights reserved.

1. Introduction

The ferrite materials have been widely used as various elec-
tronic devices such as inductors, cable shielding, EMI suppression
and/or electromagnetic wave absorbers in the relatively high-
frequency region up to a few hundreds of MHz because of high
magnetic permeability and high electrical resistivity. However,
further improvements of the permeability performance in the
higher frequency region up to a few GHz have been attempted [1].
The magnetic permeability of a material is a relevant factor to
design devices, and it is advisable to investigate the behavior of
the ferrite materials as a function of the frequency [2,3].

There are several phenomenological models of the magnetic
dispersion and points out the common ‘‘denominator’’ of the
oscillations of the mesoscopic domains corresponding to the
magnetization walls and to the elastic media grains, respectively.
The obtained results allow rather simple and accurate descrip-
tions of the magnetic dispersion of ferrimagnetic materials, in the
frequency domain of major interest for Electronics [4].

The ferrite media under study can be considered as linear, time
invariant, isotropic and homogeneous. The magnetization vector
M
!

is proportional to the magnetic field vector H
!

, this can be

expressed as [5,6]

M
!
ðtÞ ¼ ðw�H

!
ÞðtÞ ð1Þ

where t is the time in seconds and w is the magnetic
susceptibility.

Under time harmonic conditions the convolution type equa-
tion (1) gives rise to the relationship between Fourier transforms
such as [6]

M
!
ðoÞ ¼ wðoÞH

!
ðoÞ ð2Þ

When a electromagnetic field is applied to a magnetic material, a
dissipation of heat will be produced on it, and these magnetic
losses are usually expressed by means of the imaginary part of the
complex susceptibility of the ferrite as [7]

wðoÞ ¼ wuðoÞ�jwuuðoÞ ð3Þ

where wuðoÞ and wuuðoÞ are related by means of the Kramers–
Kronig equations [3,7].

In the frequency range from RF to microwaves, the magnetic
susceptibility spectra of the ferrite can be characterized by the
different magnetizing mechanisms, domain wall motion and
gyromagnetic spin rotation [8]. So, magnetic susceptibility w can
be expressed as the contribution of two terms, gyromagnetic spin
ws and domain wall wd [9].

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/jmmm

Journal of Magnetism and Magnetic Materials

0304-8853/$ - see front matter & 2011 Elsevier B.V. All rights reserved.

doi:10.1016/j.jmmm.2011.01.043

� Corresponding author.

E-mail address: gustavo.gf2005@gmail.com (W.G. Fano).

Journal of Magnetism and Magnetic Materials 323 (2011) 1708–1711

www.elsevier.com/locate/jmmm
dx.doi.org/10.1016/j.jmmm.2011.01.043
mailto:gustavo.gf2005@gmail.com
dx.doi.org/10.1016/j.jmmm.2011.01.043


Applying the Laplace transform to the magnetization vector
M
!
ðtÞ of (1) as

M
!
ðsÞ ¼ wðsÞH

!
ðsÞ ð4Þ

where wðsÞ ¼ wðsÞu�jwðsÞuu is the complex magnetic susceptibility in
the Laplace domain.

2. Theory

2.1. Domain wall contribution

Domain wall process can be studied with an equation of
motion in which the pressure kH is equated to the sum of the
three terms [2,3]:

me
d2z

dt2
þb

dz

dt
þdz¼ kH ð5Þ

where me is the effective mass, b is the damping factor, and d the
elasticity factor, while k is a proportionality factor.

Assuming a Laplace variation of the magnetic field H¼H0est

and the displacement z¼ z0est:

mes2zðsÞþbszðsÞþdzðsÞ ¼ kHðsÞ ð6Þ

The magnetization vector of N particles [3] can be expressed as

MðsÞ ¼NpzðsÞ ð7Þ

where p is the intensity of magnetic pole.
From (6) and (7):

MðsÞ ¼
NpkHðsÞ

mes2þbsþd
ð8Þ

From (4) and (8), the contribution of the domain wall to the
magnetic susceptibility wdðsÞ can be written as

wdðsÞ ¼
o2

dwd0

s2þb1sþo2
d

ð9Þ

where o2
d ¼ d=m is the resonance frequency of domain wall,

b1 ¼ b=me is the equivalent dumping factor and wd0 ¼ kpN=d.

2.2. Spin contribution

Gyromagnetic spin contribution can be studied with a magne-
todynamics equation [2,3]:

dM
!

dt
¼ geM
!
� H
!
þ

a

j M
!
j

M
!
�

dM
!

dt
ð10Þ

where ge is the gyromagnetic ratio and a is the damping factor.
Assuming an excitation:

H¼Hiþhest
ð11Þ

M¼M0þmest ð12Þ

where Hi is the total internal field and M0 is the saturation
magnetization of the ferrite and mest and hest are the dynamic
parts of the fields.

The magnetic susceptibility ws can be expressed as

ws ¼
ðosþsaÞosws0

s2ð1þa2Þþ2osasþo2
s

ð13Þ

where os ¼�geHi is the resonance frequency of spin component
and ws0 ¼�gM0 is the static magnetic susceptibility.

2.3. Total susceptibility

The total magnetic susceptibility wðsÞ of the soft ferrite can be
computed as the contribution of wdðsÞ and wsðsÞ component [10]:

wðsÞ ¼ s3aþs2bþcsþd

ðs2þb1sþo2
dÞ s2þs 2osa

ð1þa2Þ
þ

o2
s

ð1þa2Þ

� � ð14Þ

where

a¼
ðaosws0Þ

1þa2

b¼
ð1þa2Þo2

dwd0þws0o2
s þaosws0b1

1þa2

c¼
2osao2

dwd0þws0o2
sb1þaosws0o2

d

ð1þa2Þ

d¼
o2

so2
dwd0þws0o2

so2
d

ð1þa2Þ
ð15Þ

3. Material and methods

The concept of stability is extremely important in system
studies. This is true for the simple reason that stability is, in
almost all cases, the minimum condition that a system must meet
in order to behave acceptably [11]. On the other hand, it does not
follow that a system will exhibit acceptable behaviour just
because it is stable. The notion of stability involves the behaviour
of the system when it is subjected to general inputs. If the system
output is bounded for all time for every bounded input, the
system is said to be bounded-input, bounded-output (BIBO). First,
requiring the system with a transfer function wðsÞ ¼NðsÞ=DðsÞ to be
BIBO, the degree of N(s) must be less than or equal to the degree
of D(s) [11]. If any system pole lies in the right hand s-plane the
system response will grow without bound as a result of any finite
initial condition on the output of its derivatives [12,13]. There-
fore, BIBO stability requires strictly left hand plane poles [11].

The Routh–Hurwitz criterion is a method for determining the
presence the number of roots of a polynomial with positive real
parts [12,14].

From (14), the poles of the magnetic susceptibility function
wðsÞ, can be expressed as (Fig. 1):

S1,2 ¼
�b17

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

1�4o2
d

q
2

ð16Þ

S3,4 ¼

� 2osa
ð1þa2Þ

7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2osa
1þa2

� �2
�4 o2

s

1þa2

r

2
ð17Þ

Fig. 1. Allowed locations of the poles of the magnetic susceptibility function.
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