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a b s t r a c t

We model current-induced domain wall motion in magnetic nanowires with the variable width.

Employing the collective coordinate method we trace the wall dynamics. The effect of the width

modulation is implemented by spatial dependence of an effective magnetic field. The wall destination in

the potential energy landscape due to the magnetic anisotropy and the spatial nonuniformity is

obtained as a function of the current density. For a nanowire of a periodically modulated width, we

identify three (pinned, nonlinear, and linear) current density regimes for current-induced wall motion.

The threshold current densities depend on the pulse duration as well as the magnitude of wire

modulation. In the nonlinear regime, application of ns order current pulses results in wall displacement

which opposes or exceeds the prediction of the spin transfer mechanism. The finding explains stochastic

nature of the domain wall displacement observed in recent experiments.

& 2009 Elsevier B.V. All rights reserved.

1. Introduction

A magnetic domain wall (DW) interacts with spin-polarized
electrical current and as a result a displacement is induced by the
application of a current [1,2], showing the possible electrical
control of the magnetization direction [3–7]. For both technolo-
gical and fundamental reasons the effect of electrical current in
such nonuniform spin texture attracts much attention [8–12]. This
physics is reflected not only in possible spintronics devices
[13–15] but also in new concepts such as spin-motive forces
[16]. Recently, we revealed that such current-drives cannot be
identified with any equivalent field-drives by investigating DW
creep motion experimentally and theoretically in the light of the
universality classes [17].

The current-induced DW motion is now well-understood in
terms of the spin transfer mechanism [2,18–27]; the conservation
of angular momentum between conducting and localized spins
results in the DW propagation in the direction of the electrons’
flow. While a number of experimental results support this
scenario [3–6,28–33] some counter examples have been reported
for DWs trapped in nonstraight wires [30,34,35]. Since spatial
modulation of the sample gives rise to an alternating potential-
energy profile for the DW [36] the current-induced dynamics can

be strongly influenced by shape-variation of the nanowire. The
wire-shape patterning [37–39] as well as deliberately introduced
defects in nanowires [40–42] demonstrate geometrical control of
the DW’s position and direction of the motion, which is crucial in,
e.g., a precise loading of DWs in memory devices. Combining
curved nanowires with DC magnetic fields, measurements of the
DW resonance induced by AC [7,44,43] and pulsed [34,44]
currents have been performed. Thus, detailed analysis of how
the DW negotiates with the shape effects in the presence of the
spin-transfer torque becomes more important. However, due to
nonlinear nature arising from the magnetic anisotropy and the
spatial nonuniformity, a basic understanding of the current-
induced DW dynamics in magnetic nanowires with spatial
variation still remains to be explored.

In this work, we perform analytical and numerical study of the
shape effect on the DW dynamics by means of the collective
coordinate method [45–47] which is widely adopted to visualize
essential features of DW physics [8–11]. The magnitude and
periodicity of spatial variation in a patterned wire are implemen-
ted by position dependence of effective magnetic fields as
described below. Compared to more elaborated micromagnetic
simulations [48] our approach provides a considerably concise
computational method as well as a clear physical interpretation.
Owing to these facts, it is possible to survey a wide range of the
model parameters such as pulsed current density and duration. As
an example, we study current-induced DW motion in nanowires
with the periodically modulated width as shown in Fig. 1(a) and
(b). The shape effect is reflected in periodic changes of the energy
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landscape which modify the local propagation field. For
application of short current pulses, it is shown that the
backward displacement of the DW occurs, opposing to the flow
of electrons. This finding is relevant to a recent experimental
observation [35].

In the next section we present our approach for calculating the
DW dynamics, using the collective coordinate method. We then
show how the effect of nanowire modulation can be accounted
for. In Section 3, this method is applied to magnetic wires with a
sinusoidally modulated width (modulation amplitude 20% and
periodicity 1mm). We calculate the DW displacement in the
shaped nanowire varying the magnitude and duration of activa-
tion current pulses. We find three current density regimes
depending on properties of the DW dynamics. We argue the
results in terms of a trajectory of the collective coordinates in the
DW energy landscape. Comparing with a recent experiment, a key
feature of our calculations is explained. The final section is
devoted to summary and conclusion.

2. Model

We consider a thin ferromagnetic nanowire composed of
Permalloy (NiFe), which has the easy uniaxial and the hard out-of-
plane magnetic anisotropies due to demagnetization fields. The
hard and easy axes are respectively in y and z direction in our
coordinate system as shown in Fig. 1(a). In this study, we use the
one-dimensional model of magnetization dynamics along the z

axis, assuming uniformity in the lateral directions (the x–y plane).
In the light of this simplification, the dynamics of a single domain
wall can be described by a set of the collective coordinates; the
center position q and the tilt angle c of the DW plane relative to
the easy x–z plane as indicated in Fig. 1(a). By means of these
coordinates, the Landau–Lifshitz equation with the spin-transfer

torque term [2,26] reduces to

_q ¼ uþ
Dg

1þa2
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where we define _q ¼ dq=dt, g the gyromagnetic ratio, a the
damping constant, HK is a perpendicular anisotropy field, and D is
the wall width parameter. This model provides a quasiparticle
picture of the DW [49]. External drives in this system are twofold
[17,50–53]; an external magnetic field H along the z axis, and the
spin transfer torque term [1,2,19–21] u¼mjj due to the electrical
current density j along the wire. In the latter, the current mobility
is defined by mj ¼ ðPgmBÞ=ð2eMsÞ, where P the spin polarization, g

the g-factor, mB the Bohr magneton, e the elementary charge, and
Ms the saturation magnetization. It is important to note that the
u-term does not derive from any actual potentials [26]. The model
is appropriate for description of transverse domain walls while
the dynamics of vortex domain walls can be interpreted in the
one-dimensional model provided the anisotropy field, HK , is
properly adjusted. The DW displacement is independent of its
chirality.

In the present study, the original version of the Landau–Lifshitz
damping [54] is adopted, for which the relaxation properly lowers
the DW energy and an intrinsic pinning is absent in the nature of
the case [2,26,55]. Although inclusion of nonadiabatic spin
torques and/or spin–orbit interactions is an interesting subject
we focus on the effect of nanowire shape on the DW dynamics
together with the main contribution due to the current. We have
checked that those subleading effects does not modify the main
features of our result qualitatively.

Due to competition of the exchange interaction and the
magnetic anisotropy, DWs have a characteristic surface tension,
s. As well-known in the text book [46], energy minimization
gives, s¼ s0ð1þQ�1sin2cÞ1=2, where s0 ¼

ffiffiffiffiffiffiffiffiffiffi
AsKu

p
with As, the

exchange stiffness constant, Ku, the uniaxial anisotropy constant,
and Q is the ratio of Ku to the perpendicular anisotropy constant.
For a wire with the constant cross-sectional area, A, the surface
energy, sA, does not depend on the DW position. In spatially
nonuniform wires, however, A varies as the DW moves, giving rise
to position dependence of the DW energy. For the long-
wavelength modulation compared to the DW width, pD, the DW
energy can be given by

VDW ¼ sAðqÞ; ð3Þ

apart from the Zeeman contribution. The gradient of VDW with
respect to q exerts a force acting on the DW [56]. This can be
interpreted as the effective field,

Hshape ¼ �
s

2Ms

@

@q
lnAðqÞ; ð4Þ

which depends on the position q (and also on c through s). Thus,
the shape effect can be included in the equations of motion
Eqs. (1) and (2) by replacing H with HþHshape.

In order to understand the influence of the shape effect on the
DW dynamics, we study a ferromagnetic nanowire with sinu-
soidally patterned edges as shown in Fig. 1(a). The cross-sectional
area with a constant thickness h is expressed as

AðqÞ ¼ hw½1� rcosð2pq=dÞ�; ð5Þ

where the average width w¼ ðw1þw2Þ=2, the modulation ampli-
tude r¼ ðw1 �w2Þ=2w, with the maximum and minimum widths
w14w2, and the sinusoidal period d as illustrated in Fig. 1(b). In
the present study, we assume d4pD and Lbw4h where L is the
wire length. Substituting Eq. (5) in Eq. (3), we obtain the periodic
energy landscape shown in Fig. 1(c).

Fig. 1. (a) A schematic illustration of a thin ferromagnetic nanowire with the

periodically modulated width containing a single domain wall (DW). The arrows

indicate magnetization direction. The DW is characterized by two collective

coordinates, i.e., q, the center position, and c, the tilt angle from the easy plane. (b)

A top view of the patterned wire with w1 4w2, the widths, and d, the period of the

modulation. The cross-sectional area is modeled by Eq. (5). (c) An energy

landscape of the DW, VDW, given by Eq. (3) with (5) in the ðq;cÞ phase space. The

periodicity in each coordinate stems from the patterned wire and the magnetic

anisotropy, respectively.
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