Contents lists available at ScienceDirect

Journal of Magnetism and Magnetic Materials

journal homepage: www.elsevier.com/locate/jmmm

Perturbed angular correlation studies of ¹⁸¹Ta hyperfine interactions in Hf–Ni and Zr–Ni compounds

P.R.J. Silva*, H. Saitovitch, J.T. Cavalcante, M. Forker¹

Centro Brasileiro de Pesquisas Físicas, Rua Dr. Xavier Sigaud, 150, Rio de Janeiro, RJ, CEP 22290-180, Brazil

ARTICLE INFO

Article history: Received 16 October 2009 Received in revised form 18 December 2009 Available online 4 January 2010

Keywords: HfNi₅ ZrNi₅ Hf₂Ni₇ Hyperfine interaction Perturbed angular correlation

1. Introduction

Earlier studies of the magnetic properties of the Zr–Ni intermetallic compound ZrNi₅ have led to diverging conclusions: On one hand, magnetization measurements by Amamou et al. [1] and electronic structure calculations by Turek et al. [2] have provided no evidence for ferromagnetic order in ZrNi₅ at temperatures $T \ge 4.2$ K. Very weak itinerant ferromagnetism has been found [3] in metastable Zr–Ni and Hf–Ni alloys only beyond a critical Ni concentration of about 90 at.% (ZrNi₁₀). On the other hand, Drulis et al. [4] have concluded from magnetization vs. temperature data that ZrNi₅ is a rather strong ferromagnet with a Curie temperature of 647 K.

Nuclei in ferromagnetic solids experience a magnetic hyperfine field B_{hf} (Ref. [5]). Ferromagnetic order can therefore be detected by observing the resulting Larmor precession of nuclear magnetic moments with frequency $\omega_m = 2\pi v_m = g\mu_N B_{hf}/\hbar$ (g denotes the nuclear g factor). In this communication we report a search for spontaneous magnetic order of ZrNi₅ and HfNi₅ by looking for the existence of a magnetic hyperfine field at the Zr(Hf) site.

The search was carried out with the perturbed angular correlation (PAC) technique [6]. The angular correlation of two successive γ -rays of a $\gamma\gamma$ -cascade in nuclear decay may be modulated in time by hyperfine interactions in the intermediate state of the cascade. The observation of the time-dependence of

ABSTRACT

The hyperfine interaction experienced by ¹⁸¹Ta nuclei in the intermetallic compounds $ZrNi_5$, $HfNi_5$, and Hf_2Ni_7 has been investigated by perturbed angular correlation (PAC) spectroscopy. At temperatures $T \ge 15$ K the ¹⁸¹Ta angular correlation of appropriately annealed $ZrNi_5$ and $HfNi_5$ is unperturbed, indicating the absence of a magnetic hyperfine interaction. This observation rules out the possibility of spontaneous magnetic order of $ZrNi_5$ and $HfNi_5$ recently proposed in the literature. The temperature dependence of the electric quadrupole interaction of ¹⁸¹Ta in Hf_2Ni_7 suggests the existence of a reversible phase transformation at $T \ge 500$ K.

© 2009 Elsevier B.V. All rights reserved.

an angular correlation therefore provides information on magnetic and electric hyperfine interactions in condensed matter.

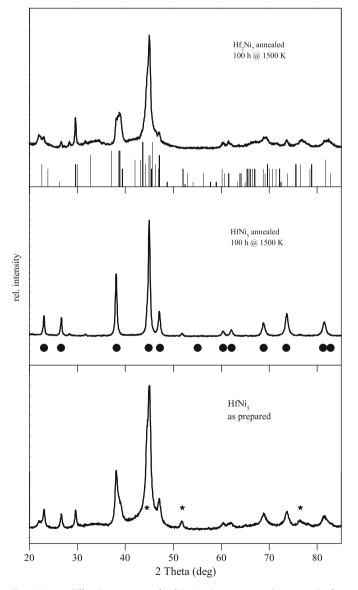
In the present study, the isotope ¹⁸¹Ta was used as nuclear probe. Apart from the favourable nuclear parameters of its $\gamma\gamma$ -cascade (anisotropy, half life, and nuclear moments), the fact that the excited states of ¹⁸¹Ta are populated by the β^- decay of ¹⁸¹Hf ($T_{1/2}$ =42 d) makes this isotope the ideal probe for PAC studies of Hf and Zr compounds. The recoil involved in the β^- decay of ¹⁸¹Hf is too small (< 6 eV; Ref. [7]) to dislocate the decaying nucleus from its lattice position, and one can therefore be sure that in Hf compounds the PAC probe ¹⁸¹Hf-doped Zr compounds where – due to the pronounced chemical similarity of Hf and Zr – ¹⁸¹Hf substitutes Zr atoms. These considerations have motivated ¹⁸¹Ta PAC studies of numerous Hf(Zr) compounds, among them several Hf(Zr)–Ni intermetallics [8–13].

The Hf(Zr) site (4*a*) of the AuBe₅-type structure of Hf(Zr)Ni₅ (space group *F*-43*m*) has cubic symmetry point with zero electric field gradient (EFG). A nuclear quadrupole interaction for ¹⁸¹Ta on the Hf(Zr) site can thus be excluded. In case the host compound Hf(Zr)Ni₅ presents spontaneous magnetic order, one therefore expects a perturbation by a pure magnetic hyperfine interaction, in the absence of magnetic order the angular correlation will be unperturbed, i.e. constant in time.

At the Ni-rich end the phase diagrams of the binary Zr–Ni and Hf–Ni systems [14] are rather similar. Both show the phases Hf(Zr)Ni₅ and Hf(Zr)₂Ni₇. The latter melts congruently at 1440(1480)° C and Hf(Zr)Ni₅ forms through the peritectic reaction L+Hf(Zr)₂Ni₇ \leftrightarrow Zr(Hf)Ni₅ 1300(1240)° C. An eutectic reaction L $\leftrightarrow \gamma$ +Hf(Zr)Ni₅ with γ the terminal solution of Hf(Zr) in Ni occurs at 1170(1190)° C. A sample of Hf(Zr)Ni₅ produced in

^{*} Corresponding author. Tel.: +55 21 21417157; fax: +55 21 2141 7400. *E-mail address:* prjs@cbpf.br (P.R.J. Silva).

¹ Permanent address: HISKP, University of Bonn, Nussallee 14-16, D-53115 Bonn, Germany.


^{0304-8853/\$ -} see front matter \circledcirc 2009 Elsevier B.V. All rights reserved. doi:10.1016/j.jmmm.2009.12.037

non-equilibrium conditions, e.g., by quenching from the melt, may therefore contain the phases $Hf(Zr)Ni_5$ and $Hf(Zr)_2Ni_7$ and precipitates of fcc Ni. For the identification of eventual $Hf(Zr)_2Ni_7$ contributions to the PAC spectra of ¹⁸¹Ta: $Hf(Zr)Ni_5$, we have also studied the hyperfine interaction of ¹⁸¹Ta in Hf_2Ni_7 as a function of temperature. According to Eshelman and Smith [15], Zr_2Ni_7 crystallizes in a monoclinic crystal structure with C2/m space group symmetry. Dattagupta and Schubert [16] have shown Hf_2Ni_7 to be isotypic to Zr_2Ni_7 .

2. Experimental

2.1. Sample preparation and characterization by X-ray diffraction

PAC samples of ZrNi₅, HfNi₅, and Hf₂Ni₇ were produced by melting stoichiometric amounts of the metallic components –

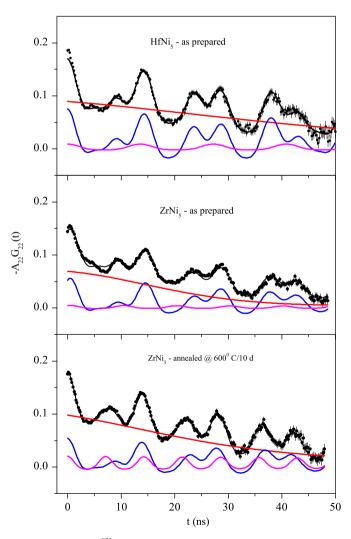


Fig. 1. X-ray diffraction pattern of $HfNi_5$ in the as-prepared state and after annealing for 100 h at 1500 K, taken at 300 K with Cu K_a radiation. The full points in the middle section mark the main reflections of $ZrNi_5$ observed by Smith and Guard [18]. The full stars in the bottom section correspond to reflections of fcc Ni. The top-most section shows the diffraction pattern of annealed Hf_2Ni_7 with the vertical bars representing the diffraction diagram of Hf_2Ni_7 reported by Dattagupta and Schubert [16].

together with about 0.1 at.% of radioactive ¹⁸¹Hf metal – in an arc furnace under argon atmosphere. Inactive samples for X-ray diffraction studies were prepared in the same way. In the asprepared state at room temperature the samples of $ZrNi_5$ and HfNi₅ were found to be ferromagnetic. The spontaneous magnetization disappeared after annealing for 100 h at 1500 K. The same observations have been reported by Kissell et al. [17]. No spontaneous magnetization was found for Hf₂Ni₇.

Because its formation through a peritectic reaction, homogenisation of a sample of $Hf(Zr)Ni_5$ rapidly cooled from the melt requires annealing at high temperatures. We have studied the effect of a high-temperature treatment of rapidly cooled $Hf(Zr)Ni_5$ both with X-ray diffraction and perturbed angular correlations.

Fig. 1 shows the X-ray diffraction pattern of $HfNi_5$ in the asprepared state and after annealing at 1500 K for 100 h. The pattern of annealed $ZrNi_5$ was identical to that of $HfNi_5$. The spectra—taken at room temperature with K_{α} radiation—mainly consist of the pattern of a AuBe₅-type compound and agree in the main features with the $ZrNi_5$ spectra reported by Smith and Guard [18], Gachon et al. [19] and Drulis et al. [4]. The lattice parameter derived from the spectra in Fig. 1 (*a*=0.6686(10) nm and 0.6706(10) nm for $HfNi_5$ and $ZrNi_5$, respectively) also agree with the values previously reported [4,18,19] for $ZrNi_5$.

Fig. 2. PAC spectra of ¹⁸¹Ta in HfNi₅ and ZrNi₅ at 295 K in the as-prepared state. The samples were produced by arc-melting and rapid cooling from the melt. The bottom-most spectrum was obtained after annealing ZrNi₅ for 10 d at 900 K.

Download English Version:

https://daneshyari.com/en/article/1801747

Download Persian Version:

https://daneshyari.com/article/1801747

Daneshyari.com