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a b s t r a c t

The exchange interactions and the magnetic exchange energies are calculated by using the mean field

theory and the probability law of Zn1�xMnxCr2O4 nanoparticles. The high-temperature series

expansions have been applied in the spinels Zn1�xMnxCr2O4 systems, combined with the Pad�e

approximants method, to determine the magnetic phase diagram, i.e. TC versus dilution x. The critical

exponent associated with the magnetic susceptibility (g) is deduced. The obtained value of g is

insensitive to the dilution ratio x and may be compared with other theoretical results based on the 3D

Heisenberg model.

& 2009 Published by Elsevier B.V.

1. Introduction

Ferrites are ceramic materials formed by reacting metal oxides
into magnetic materials. These are soft magnetic materials that
can be both easily magnetized and demagnetized, so that it can
store or transfer magnetic energy in alternating or other changing
wave forms (i.e., sine, pulse, square, etc.). According to their
structure, spinel-type ferrites are natural superlattices. It has
tetrahedral A site and octahedral B site in AB2O4 crystal structure.
It shows various magnetic properties depending on the composi-
tion and cation distribution. Various cations can be placed in
A and B sites to tune its magnetic properties. Depending on
A and B site cations, it can exhibit ferrimagnetic, antiferromag-
netic, spin glass, and paramagnetic behavior [1,2]. Due to their
remarkable behavior of magnetic and electric properties they are
subjects of intense theoretical and experimental investigation for
application purpose [2–6].

The system Zn1�xMnxCr2O4 is particularly attractive because
competitive antiferromagnetic interactions Cr–Cr, Mn–Cr, and
Mn–Mn are present [7]. The two normal spinels MnCr2O4 and
ZnCr2O4 form a solid solution throughout the whole range of

composition: MnCr2O4 is a non-collinear ferrimagnet with TC=43
K [8] while ZnCr2O4 orders antiferromagnetically with TN=16 K
[9]. Ledang et al. [8] reported NMR and low a.c. susceptibility of
the Zn1�xMnxCr2O4 mixed spinel system and for x40.6 observed
unidirectional anisotropy and remanent magnetization. The
existence of a spin-glass state was proposed for a narrow range
of compositions.

In this work, the values of the exchange interactions are
calculated, by a probability law for the MnCr2O4 nanoparticle and
ZnCr2O4 by using the mean field theory and probability law. The
probability law is applied to the ferrite spinels Zn1�xMnxCr2O4

systems to determine the exchange interaction JMn–Cr in the range
of dilution 0rxr1. The results obtained are deduced by using
the experimental results [10,11]. The Pad�e approximant (PA) [12]
analysis of the high-temperature series expansions (HTSE) of the
correlation functions has been shown to be a useful method for
the study of the critical region [13,14]. We have used this
technique to determine the critical temperatures TC(TFerriM) or
the freezing temperature TSG and the critical exponent g
associated with the magnetic susceptibility w(T). The series
expansions of the susceptibility w(T) have been derived to the
seventh order in the reciprocal temperature for spinels lattices
including both nearest-neighboring (nn) and next-nearest-neigh-
boring (nnn) interactions in the Heisenberg model [15]. We have
applied this method to the spinel lattice. Estimate values of the
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TC(TFerriM) or TSG and critical exponent g for the systems
Zn1�xMnxCr2O4 are given in the range order (0rxr0.1) and
(0.9rxr1).

2. Theory

2.1. Calculation of the values of the exchange integrals

2.1.1. Mean field theory

Starting with the well-known Heisenberg model, the Hamilto-
nian of the system is given by

H¼ � 2
X

i;j

Jij
~Si
~Sj ð1Þ

where Jij is the exchange integral between the spins situated at
sites i and j. ~Si is the spin operator localized at the site i. In
this work, we consider the nearest neighbouring (nn) and next
nearest neighbouring (nnn) interactions. To deduce the value of
exchange interaction of MnCr2O4 and ZnCr2O4, I have used
the expression of the N�eel temperature TN in order phase given
in Ref. [16].

Using the experimental values of TN obtained by Bhowmiket al.
[10] for the MnCr2O4 nanoparticles and by Leccabue et al. [11] for
the ZnCr2O4 to determine the exchange interactions JMn–Cr in the
MnCr2O4 system, and the nearest neighbor and the next-
neighbour super-exchange interaction J1(x) and J2(x) respectively,
the intra-planar and the inter-planar interactions are deduced and
the corresponding classical exchange energy for magnetic struc-
ture for the ZnCr2O4 system. The obtained results are given in
Tables 1 and 2.

2.1.2. Probability law

In the last work, the authors [17] used the probability law to
calculate the exchange integrals. In this work, we have applied the
probability law in the diluted spinels systems Zn1�xMnxCr2O4,
only the random placement of the ions A and B leads to the spatial
fluctuations of the signs and magnitudes of the super-exchange
interaction between the magnetic ions A and B. Due to the nature
of dilution problem we choose a probability law permitting us to
determine exchange integral JAB(x) for each concentration x. The
exchange integral of the opposite pure compound AB2X4 of the
bound random spinel is denoted JAB. The occupation probability
p(i) of the two ions A or B induced in the interaction is
pðiÞ ¼ Ci

nxn�ið1� xÞi, where n is the total number of lattice sites
inside a sphere with the volume ð4=3ÞpR3

i (Ri denotes the distance

between the sites i and j, n is the number of cations the Pth
coordination sphere around a given cation chosen as the central
one, for this structure n=3), while i varies from 0 to 3. The
exchange integral for such an occupation is assumed to be
Ji
AB ¼ ðJ

n�i
A Ji

BÞ
1=n. The expression obtained is [18]:

JABðxÞ ¼
X3

i ¼ 0

Ci
3x3�ið1� xÞiðJ3�i

A Ji
BÞ

1=3
ð2Þ

where JAB correspond to the exchange interactions of the
opposite pure systems AB2X4.

Zn1�xMnxCr2O4 is diluted ferrimagnetic spinels MnCr2O4 with
the value of the exchange integral JAB, JBB and JAA being given by
Ref. [19]. The magnetic exchange energies Ei (i=1�3) are deduced
using the expressions E1=E2=5JAA�3JAB and E3=3JBB�3JAB given
by Ref. [20].

2.2. High-temperature series expansions

In order to deduce the expression of the susceptibility of the
system with two sublattices, the Hamiltonian of the Heisenberg
with extern field hex may be put in the form

H¼ � 2JAA

X

/i;i0S

~Si
~Si0 � 2JBB

X

/j;j0S

~sj~sj0 � 2JAB

X

/i;jS

~Si~sj

�mBhexðgA

X

i

Sz
i � gB

X

j

sz
j Þ ð3Þ

where ~S and ~s are spin operators of ions in sublattice A and B,
respectively. gA and gB are the corresponding gyromagnetic
factors. The symbol /yS denotes summation over nearest
neighbors. JAA, JBB and JAB are the intra- and the inter-sublattice
exchange interactions in ferrimagnetic spinels.

The susceptibility for the collinear normal ferrimagnetic spinel
is as follows:

w¼
m2

B

3kBT
ðNAg2

AS
2
þNBg2

Bs
2
� g2

A

X

ia i0

/~Si
~Si0S� g2

B

X

ja j0

/~sj~sj0S

�2gAgB

X

i;j

/~Si~sjSÞ ð4Þ

where (NA, NB) and ðS¼ 5=2; s¼ 3=2Þ are the number of ion and
the spin value of each type of spin, respectively.

Finally, we obtain simple form

w¼
m2

B

3kBT
ðNAg2

AS
2
þNBg2

Bs
2
� NAg2

AgAA � NBg2
BgBB � 2NBgAgBgBAÞ

ð5Þ

Following the procedure in Refs. [20–27], we compute the
expressions of spin correlation functions gAA, gBB and gAB in
terms of power of b=1/kBT (kB is the Boltzmann’s constant) and
mixed powers of J1 ¼ 2JBB s2, J2 ¼ 2JAB Ss and J3 ¼ 2JAA S

2
with

S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SðSþ1Þ

p
,

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðsþ1Þ

p
ð6Þ

Table 1

The different sizes L (nm), the N �eel temperature TN (K) and the values of the

exchange interactions |JAB(K)/kB| of MnCr2O4 nanoparticle.

L (nm) [10] TN (K) [10] |JAB (K)/kB|

11 52 6.93

16 47 6.26

19 46 6.13

Bulk 45 6.00

Table 2

The Curie—Weiss temperature yP (K), the N�eel temperature TN (K), the values of the first, second, intra-plane, inter-plane exchange integrals and the energy of ZnCr2O4.

yP (K) [11] TN (K) [11] J1/kB (K) J2/kB (K) Jaa/kB (K) Jab/kB (K) Jac/kB (K) (Jab+ Jac)/Jaa (K) |E|/kB S2 (K)

�424 16 �10.66 �6.93 �21.32 �98.08 �27.72 5.90 �147.12
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